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1. Introduction

The goal of this paper is to count world sheet instantons on a certain Calabi-Yau threefold

X. Now that in itself was essentially solved by mirror symmetry a long time ago [1], but

here there is an important subtlety that does not appear in the most simple Calabi-Yau

constructions. This subtlety is the appearance of torsion curve classes in the degree-2

homology of X. In particular,1

H2

(
X, Z

)
= Z3 ⊕ Z3 ⊕ Z3, (1.1)

which contains the torsion2 subgroup Z3 ⊕Z3. There are already a few known examples of

such Calabi-Yau manifolds with torsion curves [2 – 6], but the proper instanton counting

has never been done before.

Still, the question remains: Why should we be interested in this? We are really inter-

ested in instanton corrections to the heterotic MSSM constructed in [7 – 9], in particular

to the superpotential for bundle moduli. Classically, there is no superpotential generated

for the vector bundle moduli if the bundle is at a smooth point in its moduli space (see

also [10] for a non-smooth example). If there were no potential generated for the vector

bundle moduli then there would be no hope of stabilizing all moduli, a phenomenological

disaster. As is well known, only genus 0 instantons (rational curves) contribute to the

superpotential, and we will exclusively consider these in the following. The general hope is

that the E8 gauge bundle will give rise to instanton corrections generating a non-vanishing

1In the following, Z3 = Z/3Z always denotes the integers mod 3. Similarly, we write (Z3)
n = ⊕nZ3 =

Z3 ⊕ · · · ⊕ Z3 for the Abelian group generated by n generators of order 3.
2Not to be confused with the completely unrelated torsion tensor of a connection.
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superpotential which is sufficiently complicated to stabilize moduli [11 – 17]. However, this

is far from obvious, especially in view of unexpected cancellations between instantons in

the same homology class found in [18 – 22]. Now in our case [23 – 26] the Calabi-Yau three-

fold is not a toric complete intersection and the vector bundle does not come from the

ambient space, so the above arguments do not apply. Still, it is not, a priori, clear that

the instanton contributions do not cancel for some other reason. However, as we are going

to show in the following, the simplest smooth rigid rational curves in X are alone in their

homology class, and no such cancellation can occur. In fact, they contribute to the vector

bundle superpotential as will be explained elsewhere.

Another independent motivation is the following. Any (real 2-dimensional) surface in

a torsion homology class cannot be contracted by definition. Yet integrating any closed

2-form over this surface must give zero, since a multiple of the surface is contractible. So

whatever minimal volume surface there is in a torsion homology class, its volume is not

the integral over the Kähler form. In particular, the curve cannot be holomorphic and a

D-brane carrying the corresponding K-theory3 charge cannot preserve any supersymmetry

(assuming no background fluxes).

As a final motivation, we note that, on general grounds, H2(X, Z)tors = H3(X, Z)tors.

Hence, if there is torsion then there is a possibility for fractional Chern-Simons invariants.

It was argued in [28] that under favorable circumstances this can generate a potential for

complex structure moduli, Kähler moduli, and dilaton.

Given these motivations, we will only complete the first step and count rational curves

on X. Really, this means finding the instanton correction F
np
X,0 to the prepotential of the

topological string. This is usually written as a (convergent) power series in h11 variables

qa = e2πita . The novel feature of the 3-torsion curves on X is that for each 3-torsion

generator we need an additional variable bj such that b3
j = 1. The Fourier series of the

prepotential on X becomes

F
np
X,0(q1, q2, q3, b1, b2) =

∑

n1,n2,n3∈Z

m1,m2∈Z3

n(n1,n2,n3,m1,m2) Li3
(
qn1
1 qn2

2 qn3
3 bm1

1 bm2
2

)
, (1.2)

where N(n1,n2,n3,m1,m2) is the instanton number in the curve class (n1, n2, n3,m1,m2). Re-

alizing this, we will investigate a number of complementary ways to determine this prepo-

tential:

• Part of the prepotential of the universal cover X̃ was computed directly in [29],

and by carefully descending to the quotient X = X̃/(Z3 × Z3) we can compute the

corresponding part of the prepotential of X.

• The same part of the prepotential of X can also be computed by directly counting

curves on X.

These two A-model calculations will be carried out in this paper, which we therefore en-

title Part A. By construction, these computations only yield a part of the prepotential,

3We remind the reader that on a Calabi-Yau threefold Hev(Y,Z) ≃ K0(Y ) and Hodd(Y, Z) ≃ K1(Y ), so

in particular the torsion parts are identical [27].
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although an important one. To overcome this limitation, we will use the B-model and

mirror symmetry in Part B, the companion paper [30]. More precisely, we will do the

following:

• Mirror symmetry for the toric complete intersection X̃ provides an algorithm to

compute instanton numbers. Unfortunately, there are many non-toric divisors which

cannot be treated this way. It turns out that, after descending to X, precisely the tor-

sion information is lost. In this approach, one can only compute F
np
X,0(q1, q2, q3, 1, 1).

• As a pleasant surprise we find strong evidence that the manifold X of principal

interest is self-mirror. In particular, we attempt to compute the instanton numbers

on the mirror X∗ by descending from the covering space X̃∗. The toric embedding

of X̃∗ is such that all 19 divisors are toric. A complete analysis including the full

Z3 ⊕ Z3 torsion information would be feasible after some straightforward efficiency

improvement of existing software [31].

• Although the full quotient X = X̃/(Z3 × Z3) is not toric, it turns out that a certain

partial quotient X̃/Z3 can be realized as a toric variety. That way, one only has to deal

with h11(X̃/Z3) = 7 parameters, which is manageable on a computer. On the mirror

(X̃/Z3)
∗, all divisors are toric and we can compute the expansion F

np
X,0(q1, q2, q3, 1, b2)

to any desired degree. A symmetry argument allows one to recover the b1 dependence

as well.

The result of these calculations is the complete prepotential F
np
X,0(q1, q2, q3, b1, b2). The

instanton numbers can be numerically computed for any integral homology class, limited

only by computing power. We preview these results in the conclusion of this paper. A

complete discussion is presented in [30].

To prepare the ground, we first have to compute the torsion curves on X. We will do

this in I of the present paper. In sections 2 and 3 we define the manifold X = X̃/G as a free

quotient and introduce appropriate bases for the homology and cohomology of the cover.

In 4 we compute the group homology and cohomology of Z3 and Z3 × Z3 with coefficients

in the appropriate (co)homology groups. These results are used in 5 to compute the

integral homology groups of the full and of the partial quotient with appropriate spectral

sequences. 5.1 contains a non-technical summary of the torsion curves.

In II of the present paper, we proceed to do the A-model analysis of the instanton

numbers. As a simpler example without torsion curves, we first recapitulate certain free

quotients of the quintic threefold in 6. Subsequently, in sections 7 and 8 we investigate

X using the aforementioned A-model techniques. Finally, we present our conclusions in 9.

An easily readable overview over these results can be found in [32].
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Part I

Torsion curves

2. The Calabi-Yau threefold

2.1 Covering space

The Calabi-Yau manifold X we are going to investigate is constructed as a free G = Z3 × Z3

quotient of its universal covering space X̃. As usual, instead of working with a non-simply

connected manifold it is technically easier to analyze the group action on its covering space.

The simply connected Calabi-Yau threefold X̃ is one of Schoen’s threefolds [33]. It can

be described in various ways, including the fiber product of two dP9 surfaces, resolution

of a certain T 6 orbifold [34], or a complete intersection. For concreteness we adopt the

latter viewpoint in this section. One first introduces the ambient variety P2 ×P1 ×P2 with

homogeneous coordinates

(
[x0 : x1 : x2], [t0 : t1], [y0 : y1 : y2]

)
∈ P2 ×P1 ×P2 . (2.1)

A generic complete intersection of a degree (0, 1, 3) and a degree (3, 1, 0) polynomial is

a smooth Calabi-Yau threefold, but does not admit a non-trivial Z3 × Z3 group action.

However, the polynomials

t0

(
x3

0 + x3
1 + x3

2

)
+ t1

(
x0x1x2

)
= F1 (2.2a)

(
λ1t0 + t1

)(
y3
0 + y3

1 + y3
2

)
+

(
λ2t0 + λ3t1

)(
y0y1y2

)
= F2, (2.2b)

where λ1, λ2, λ3 are complex parameters, are invariant under the G = Z3 × Z3 action

generated by (ζ = e
2πi
3 )

g1 :





[x0 : x1 : x2] 7→ [x0 : ζx1 : ζ2x2]

[t0 : t1] 7→ [t0 : t1] (no action)

[y0 : y1 : y2] 7→ [y0 : ζy1 : ζ2y2]

(2.3a)

and

g2 :





[x0 : x1 : x2] 7→ [x1 : x2 : x0]

[t0 : t1] 7→ [t0 : t1] (no action)

[y0 : y1 : y2] 7→ [y1 : y2 : y0]

(2.3b)

This group action has fixed points in the ambient variety P2 ×P1 ×P2, but these do not

satisfy eqs. (2.2a) and (2.2b). Hence, this Z3 × Z3 group action on the complete intersection

Calabi-Yau threefold

X̃ =
{(

[x0 : x1 : x2], [t0 : t1], [y0 : y1 : y2]
)∣∣∣F1 = 0, F2 = 0

}
⊂ P2 ×P1 ×P2 (2.4)

is free.
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We point out that this Z3 × Z3 action is slightly different from the Z3 × Z3 action

investigated within the context of an heterotic standard model [35]. The group action we

discuss in this paper “does not act on the base P1” and, hence, is not included in the

classification [35]. The reason we are using the Z3 × Z3 action defined above is that it is

more amenable to toric methods, which will be important for the B-model computation

later in this paper. However, the curve counting can be easily extended to the MSSM

manifold [35], which we will present elsewhere.

Finally, let us review some facts about the homology and cohomology of the universal

cover X̃, see [33, 36]. The Hodge diamond of the Calabi-Yau threefold X̃ is self-mirror and

given by

hp,q
(
X̃

)
= 1

0

0

1

0

19

19

0

0

19

19

0

1

0

0

1 ⇒ H i
de Rham

(
X̃, R

)
=





R i = 6

0 i = 5

R19 i = 4

R40 i = 3

R19 i = 2

0 i = 1

R i = 0.

(2.5)

In general the dimension of the i-th de Rham cohomology is the same as the rank of

the i-th integral cohomology group, but the latter might also contain torsion information

which is not captured by de Rham cohomology. However, a smooth complete intersection

in a smooth toric variety does not have any torsion in its integral cohomology [37]. This

determines the integral cohomology, and Poincaré duality eq. (A.2) then yields the integral

homology groups. We conclude that

H6−i

(
X̃, Z

)
= H i

(
X̃, Z

)
=





Z i = 6

0 i = 5

Z19 i = 4

Z40 i = 3

Z19 i = 2

0 i = 1

Z i = 0.

(2.6)

2.2 The quotient

Having constructed X̃ with a free Z3 × Z3 group action, we define

X = X̃
/(

Z3 × Z3

)
. (2.7)

On general grounds, X is again a smooth Calabi-Yau threefold with fundamental group

π1(X) = Z3 × Z3. Since the defining equations (2.2a), (2.2b) allow for three independent

coefficients up to PGL(3)×PGL(2)×PGL(3) coordinate changes if one wants to preserve

– 6 –
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the Z3 × Z3 symmetry, we expect that there are h21(X) = 3 complex structure parameters.

This turns out to be true, as will be shown in more detail in 4.2.

Moreover, we know the Euler numbers4 vanish,

χ
(
X̃

)
= 2h11

(
X̃

)
− 2h21

(
X̃

)
= 0 = 9χ

(
X

)
. (2.8)

This fixes the Hodge numbers of the quotient X = X̃/(Z3 × Z3) to be

hp,q
(
X

)
= 1

0

0

1

0

3

3

0

0

3

3

0

1

0

0

1 (2.9)

However, knowing the Betti numbers does not tell us everything about the homology

classes of curves. The integral homology groups potentially contain torsion, that is, a

finite subgroup. For example, as we will show in 5

H2

(
X, R

)
= R ⊕ R ⊕ R = R3, H2

(
X, Z

)
= Z3 ⊕

(
Z3 ⊕ Z3

)
. (2.10)

The subgroup Z3⊕Z3 consisting of 9 elements is such a torsion subgroup. Clearly, explicit

knowledge of all curve homology classes is important when counting curves on X.

3. Group action

3.1 Projections

As usual, instead of analyzing the quotient X = X̃/G directly we will look at the G =

Z3 × Z3 action on the covering space. In this section, we find it particularly useful to

exploit the property that X̃ has two projections to dP9 surfaces. To see this, note that a

degree (3, 1) hypersurface in P2 ×P1 is such a dP9 surface, also called a rational elliptic

surface. Moreover, the defining equations (2.2a) and (2.2b) do not depend on [y0 : y1 : y2]

and [x0 : x1 : x2], respectively. Hence, eq. (2.2a) and eq. (2.2b) define dP9 surfaces with

natural projections π1 : X̃ → B1, π2 : X̃ → B2. Finally, each B1, B2 projects to the

common P1, yielding a commutative diagram

dimC = 3 : X̃
π2

ÂÂ?
??

??
?

π1

ÄÄÄÄ
ÄÄ

ÄÄ

dimC = 2 : B1

ÂÂ?
??

??
?

B2

ÄÄÄÄ
ÄÄ

ÄÄ

dimC = 1 : P1 .

(3.1)

4Note that eX will turn out to be self-mirror. Nevertheless, instanton corrections are present, part of

which were been computed in [29, 38, 39]. There is a common misconception based on the free K3×T 2
‹

Z2

orbifold investigated in [5, 6] that self-mirror threefolds do not receive quantum corrections to the classical

moduli space. Indeed, in that case, all rational curves come in families which happen not to contribute [40],

that is, their Gromov-Witten invariants vanish. However, this is not due to K3 × T 2
‹

Z2 being self-mirror.
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By definition, this means that X̃ is the fiber product of two dP9 surfaces, that is, X̃ =

B1 ×P
1 B2. In other words, X̃ is elliptically fibered over each Bi, i = 1, 2, and each Bi is

again elliptically fibered over the same P1. In the remainder of this section, we are going

to detail the properties of these dP9 surfaces.

The Z3 × Z3 group action descends to B1, B2. Moreover, since the action is trivial

on the P1, it must be the translation5 by two independent sections. The existence of two

sections of order three determines the Kodaira fibers and Mordell-Weil group uniquely [41]

to be

Sing(B1) = Sing(B2) = 4I3,

MW (B1) = MW (B2) = Z3 ⊕ Z3. (3.2)

Recall that the Mordell-Weil group is the set of all sections (which depends on the moduli

of the dP9 surface) together with a group law “⊞”. The Mordell-Weil sum6 α ⊞ β of two

sections α, β is the fiberwise sum. In other words,

α ⊞ β = tα(β) = tβ(α). (3.3)

Let us label7 the generating sections µ and ν on Bi, i = 1, 2 such that

MW (Bi) =
{

σ, µ, µ ⊞ µ, ν, ν ⊞ µ, ν ⊞ µ ⊞ µ, ν ⊞ ν, ν ⊞ ν ⊞ µ, ν ⊞ ν ⊞ µ ⊞ µ
}
, (3.4)

with σ being the zero section. Furthermore, note that each vertical I3 fiber is composed of

three irreducible components, intersecting in a triangle. We denote the i-th component of

the j-th I3 Kodaira fiber by θji. Up to re-indexing the divisors, there is only one possible

intersection pattern between the horizontal and vertical divisors, namely

(−) · (−) θ10 θ11 θ12 θ20 θ21 θ22 θ30 θ31 θ32 θ40 θ41 θ42

σ 1 0 0 1 0 0 1 0 0 1 0 0

µ 1 0 0 0 1 0 0 1 0 0 1 0

ν 0 1 0 1 0 0 0 0 1 0 1 0

(3.5)

Finally, denote the class of an elliptic fiber by f .

Recall the Hodge diamond, homology, and cohomology of dP9 surfaces,

hp,q
(
Bi

)
= 0

0

1

0

10

0

1

0

0, H4−i(Bi, Z
)

= H i(Bi, Z
)

=





Z i = 4

0 i = 3

Z10 i = 2

0 i = 1

Z i = 0.

(3.6)

5A point z0 on an elliptic surface C/Λ defines a group action z 7→ z + z0. A section of the elliptic

fibration Bi consists of a point in each fiber. Hence, a section s defines a group action ts : Bi → Bi by

translation along each fiber.
6We point out that the Mordell-Weil sum “⊞” must be distinguished from the sum of homology classes,

which we write as “+”. For example, α ⊞ β is again a section whereas α + β is a two-section.
7In the following, it will always be clear from the context whether we are referring to B1 or B2. Hence

we use the same symbol for divisors in B1 and B2.
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α2

α8

α3 α5 α7α1 α4 α6

Figure 1: The E8 Dynkin diagram.

Therefore, although the above 9 + 3 · 4 + 1 divisors generate H2(Bi, Z) = Z10, they cannot

be linearly independent. It is a straightforward task to identify all relations, which we will

do in B. One possible integral basis [42, 43] is

H2(Bi, Z) = spanZ

{
σ, f, θ11, θ21, θ31, θ32, θ41, θ42, µ, ν

}
, (3.7)

and we will use this integral basis in the following.

3.2 The E8 lattice

There is another special basis for the homology of the dP9 surfaces in addition to eq. (3.7).

This other basis is the natural basis choice for a generic dP9 surface B, that is, one with

12I0 singular fibers. In that case the Mordell-Weil group is E8. This means that the

quotient

H2

(
B, Z

)/
spanZ

{
σ, f

}
= MW (B) = ΛE8 (3.8)

is the E8 root lattice with respect to the height pairing

〈s1, s2〉 = 1 + s1 · σ + s2 · σ − s1 · s2. (3.9)

Therefore, one obvious integral basis choice is to pick 8 simple roots together with σ and

f ,

H2(Bi, Z) = spanZ

{
σ, f, α1, α2, α3, α4, α5, α6, α7, α8

}
. (3.10)

Of course, the generic dP9 does not have the Z3 × Z3 group action which we are interested

in. For example, the Mordell-Weil lattice in our case needs to be Z3 ⊕ Z3 instead of ΛE8 .

However, the homology groups do not know about the choice of complex structure. Hence,

although, in our case, the homology classes αi cannot be represented by sections, we can

still use the same basis for homology. The 240 roots of E8 are readily identified as

ΦE8 =
{

α ∈ H2(B, Z)
∣∣∣ α · f = 1, α · σ = 0, α · α = −1

}
. (3.11)

The choice of simple roots is not unique. For convenience, we will make the same choice

– 9 –
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as in [29]:

α1 = 2σ + 2f − µ,

α2 = 2σ + 2f − θ21 − θ31 − θ41 − µ,

α3 = θ21 + θ31 + θ41 + 2µ − ν,

α4 = 2σ + 2f − θ31 − θ32 − θ41 − µ,

α5 = 2σ + 2f − θ21 − θ41 − θ42 − µ,

α6 = − θ11 + θ21 + θ31 + θ41 + θ42 + 2µ − ν,

α7 = 2σ + 2f − θ31 − θ41 − θ42 − µ,

α8 = − 2σ − 2f + θ11 + θ31 + 2θ32 + 2θ41 + θ42 + 3ν.

(3.12)

To clarify, on a generic dP9 surface B the sections αi can be added by the usual Mordell-

Weil sum “⊞” defined previously. However, the definition of “⊞” as fiberwise sum of points

on a torus depends on having actual sections, and not just the homology classes. However,

while on the special dP9 surfaces B1, B2 the homology classes αi are still well-defined, they

need not contain a section anymore. Nevertheless, we can still define the lattice sum

⊞ : ΛE8 × ΛE8 → ΛE8 (3.13)

on ΛE8 ⊂ B1, B2 by taking it to the same as for the generic dP9 surface B.

3.3 Action on the base

We start by analyzing the base dP9 surfaces B1, B2 which, as discussed above, are again

elliptically fibered over P1. The G = Z3 × Z3 group action8 is fiberwise translation

g1 = tµ, g2 = tν (3.14)

by the two sections µ, ν of order 3 described previously. Obviously, this maps the fiber to

itself, g1(f) = g2(f) = f . On any section, that is, any element of MW (Bi), the group also

acts in the obvious way

MW (Bi) = span⊞

{
µ, ν

} / (
⊞3 µ = ⊞3ν = σ

)
,

g1(s) = s ⊞ µ, g2(s) = s ⊞ ν. (3.15)

Finally, the action on each I3 Kodaira fiber either maps each irreducible component to itself

or cyclically permutes the irreducible components, as explained in [35]. From eq. (3.5) we

can read off that

D θ10 θ11 θ12 θ20 θ21 θ22 θ30 θ31 θ32 θ40 θ41 θ42

g1(D) θ10 θ11 θ12 θ21 θ22 θ20 θ31 θ32 θ30 θ41 θ42 θ40

g2(D) θ11 θ12 θ10 θ20 θ21 θ22 θ32 θ30 θ31 θ41 θ42 θ40

(3.16)

8By abuse of notation we use G =
˘
id, g1, g

2
1 , g2, g1g2, g

2
1g2, g

2
2 , g1g

2
2, g

2
1g2

2

¯
for the group action on eX and

for the induced action on B1, B2.

– 10 –



J
H
E
P
1
0
(
2
0
0
7
)
0
2
2

Using the relations from B we can now express the G action on H2(Bi, Z) as 10 × 10

matrices in the basis eq. (3.7). One obtains

g1 =




0 0 0 3 0 0 0 0 −1 −1
0 1 0 3 0 1 0 1 −1 −1
0 0 1 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 1 0
0 0 0 −2 0 −1 0 0 1 1
0 0 0 −1 1 −1 0 0 0 1
0 0 0 −2 0 0 0 −1 1 1
0 0 0 −1 0 0 1 −1 0 0
1 0 0 −3 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 1




, g2 =




0 0 3 0 0 0 0 0 −1 −1
0 1 3 0 1 0 0 1 −1 −1
0 0 −2 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 −1 0 −1 1 0 0 1 0
0 0 −2 0 −1 0 0 0 1 1
0 0 −2 0 0 0 0 −1 1 1
0 0 −1 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 1 0
1 0 −3 0 0 0 0 0 1 2




. (3.17)

3.4 Line bundles

Having determined the group action on the base dP9 surfaces, we now investigate the action

on X̃. First, recall that by a happy coincidence h2,0(X̃) = 0 and therefore

Pic
(
X̃

)
=

{
Algebraic line bundles on X̃

}

=
{
Topological line bundles on X̃

}
= H2

(
X̃, Z

)
= H4

(
X̃, Z

)
.

(3.18)

In other words,

• Each line bundle has a unique complex structure.

• A line bundle is uniquely determined by its first Chern class.

• Every line bundle L can be written as L = O eX(D), and depends only on the homology

class of the divisor D ∈ H4

(
X̃, Z

)
.

Note that the identification H2 = H4 does not involve any duality (see A.1), which will be

important later on. To lift from Bi, i = 1, 2 to X̃, we can use

• Pull back of line bundles: π∗
i : Pic(Bi) → Pic(X̃).

• Pull back in cohomology: π∗
i : H2

(
Bi, Z

)
→ H2

(
X̃, Z

)
.

• Preimage of divisors: π−1
i : H2

(
Bi, Z

)
→ H4

(
X̃, Z

)
.

All these notions commute with the identifications eq. (3.18). However, the pull backs of

the dim H2(B1, Z) + dimH2(B2, Z) = 20 line bundles on the bases cannot be independent

in H4

(
X̃, Z

)
≃ Z19. As was shown in [44 – 46, 36], the line bundles on X̃ have a particularly

nice description, that is, the pullback of the line bundles to X̃ yields a generating set of 20

line bundles, which must satisfy one relation. This relation is that π−1
1 (f) = π−1

2 (f), both

being the Abelian surface fiber of the fibration X̃ → P1. Hence,

H4

(
X̃, Z

)
=

[
π−1

1 H2

(
B1, Z

)
⊕ π−1

2 H2

(
B2, Z

)]/〈
π−1

1 (f) = π−1
2 (f)

〉

= spanZ

{
π−1

1 (f) = π−1
2 (f),

π−1
1 (σ), π−1

1 (θ11), π−1
1 (θ21), π−1

1 (θ31), π−1
1 (θ32),

π−1
1 (θ41), π−1

1 (θ42), π−1
1 (µ), π−1

1 (ν),

π−1
2 (σ), π−1

2 (θ11), π−1
2 (θ21), π−1

2 (θ31), π−1
2 (θ32),

π−1
2 (θ41), π−1

2 (θ42), π−1
2 (µ), π−1

2 (ν)
}
≃ Z19.

(3.19)

– 11 –



J
H
E
P
1
0
(
2
0
0
7
)
0
2
2

Having determined the geometric action on the divisors of the surfaces Bi in 3.3, one can

now easily determine the G = Z3 × Z3 representation on H4(X̃, Z) in terms of 19 × 19

integer matrices. Other than to note that we use them in the following for some linear

algebra computations, it is not particularly enlightening to present the explicit matrices

here. We denote this representation as

R∨ = H4

(
X̃, Z

)
. (3.20)

3.5 Curves

Abstractly, the previous subsection boils down to the short exact sequence

0 −→ Z −→ H2
(
B1, Z

)
⊕ H2

(
B2, Z

) π∗

1+π∗

2−−−−→ H2
(
X̃, Z

)
−→ 0. (3.21)

Recall that the fiber product X̃ = B1 ×P
1 B2 is a hypersurface in B1 × B2. The Poincaré

dual (see A.1) sequence

0 −→ H2

(
X̃, Z

) π1∗⊕π2∗−−−−−→ H2

(
B1, Z

)
⊕ H2

(
B2, Z

)
︸ ︷︷ ︸

=H2

(
B1×B2,Z

)
−→ Z −→ 0 (3.22)

assures us that we can study the curves in X̃ completely by looking at their image in

B1 ×B2. All we have to do is determine the curves in B1 ×B2 that lie on the hypersurface

X̃ .

Let us introduce the notation

C1×C2 =
(
C1 × C2

)
∩ X̃ ⊂ X̃ ⊂ B1 × B2 (3.23)

for two curves C1 ⊂ B1 and C2 ⊂ B2. For example,

σ×θij = {pt.} × θij, θij×σ = θij × {pt.}. (3.24)

Also note that, for example, σ×σ is a section of the Abelian surface fibration X̃ → P1.

Using this notation, a basis for H2(X̃, Z) is

H2

(
X̃, Z

)
= spanZ

{
σ×f, f×σ,

σ×θ11, σ×θ21, σ×θ31, σ×θ32, σ×θ41, σ×θ42,

θ11×σ, θ21×σ, θ31×σ, θ32×σ, θ41×σ, θ42×σ,

σ×σ, µ×σ, ν×σ, σ×µ, σ×ν
}
≃ Z19.

(3.25)

The group action can now easily be determined from the group action on the base, 3.3,

and explicitly written in terms of 19 × 19 matrices. Again, we will use these matrices

computationally in the following, but find it unenlightening to actually write them down

here. We denote this representation suggestively as

R = H2

(
X̃, Z

)
. (3.26)

As we will now show, it is dual to the representation H4(X̃, Z).
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3.6 Poincaré duality

We now have defined a priori independent bases on H4

(
X̃, Z

)
and H2

(
X̃, Z

)
. But they are

related through the intersection pairing

H4

(
X̃, Z

)
× H2

(
X̃, Z

)
→ Z = H0

(
X̃, Z

)
, (3.27)

which is one version of Poincaré duality (see A.1). We can explicitly determine the inter-

section numbers for our two bases in terms of elementary intersection numbers on B1 and

B2: For any two basis curves C1, C2 ∈ {σ, f, θ11, . . . , θ42, µ, ν} and section s ∈ {σ, µ, ν}

(
C1×σ

)
·
(
π−1

1 C2

)
= C1 · C2 =

(
σ×C1

)
·
(
π−1

2 C2

)
, (3.28)

(
σ×s

)
·
(
π−1

1 C2

)
= s · C2 =

(
s×σ

)
·
(
π−1

2 C2

)
, (3.29)

(
σ×C1

)
·
(
π−1

1 s
)

= C1 · s =
(
C1×σ

)
·
(
π−1

2 s
)
, (3.30)

and 0 in the remaining cases. For example, (θ11×σ) · (π−1
2 θ11) = 0.

This makes it easy to write down the explicit 19 × 19 intersection matrix. One can

check that its determinant is 1, as it should be. The inverse matrix is again integral and

defines the Poincaré dual of any curve or divisor. In particularly, it follows that R and R∨

, eqs. (3.26) and (3.20), are mutually dual representations, as we already implied by the

notation.

3.7 Middle dimension

For completeness, let us also discuss the G = Z3 × Z3-action on the middle dimensional

homology group H3(X̃, Z) ≃ Z40. By Poincaré duality, this representation must be self-

dual. Unfortunately, there seems to be no simple way to write down an integral basis

of three-cycles. We did construct a G-CW complex of the 4-skeleton of X̃ , that is, a

cell complex on which G acts by permutation of cells. Given this, finding the action

on homology boils down to a lengthy linear algebra exercise on the corresponding chain

complex. With the help of a computer we found the explicit 40×40 representation matrices

for H3. As above, we do not write out the explicit matrices but simply define this Z3 × Z3

representation to be

H3 = H3

(
X̃, Z

)
. (3.31)

Note that we will only need information about H3 in 5.3, where it could be replaced by

some independent toric computation.

4. Properties of the group action

4.1 Describing integer representations

Summarizing the results of 3, the G = Z3 × Z3 group action on the homology and coho-
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mology of X̃ is

H6−i

(
X̃, Z

)
= H i

(
X̃, Z

)
=





Z i = 6

0 i = 5

R ≃ Z19 i = 4

H3 ≃ Z40 i = 3

R∨ ≃ Z19 i = 2

0 i = 1

Z i = 0,

(4.1)

where we used Poincaré duality as well, see A.1. Of course, we are really interested in the

quotient X and not in the covering space X̃ . However, as we will show is 5, the homology of

the quotient X can be calculated from the G-action on the homology of X̃ . More precisely,

certain invariants, called group homology, of the group action on H∗(X̃, Z) are the starting

point for the Cartan-Leray spectral sequence, which in turn computes H∗(X, Z). Dually, the

Leray-Serre spectral sequence computes the cohomology on X from the group cohomology

groups of the group action on H∗(X̃, Z). The purpose of this section is to find the group

homology groups of the G-representations Hq(X̃, Z) and group cohomology groups of the

G-representations Hq(X̃, Z). These are denoted by

Hp

(
G,Hq

(
X̃, Z

))
, Hp

(
G,Hq

(
X̃, Z

))
. (4.2)

An important point is that we are considering representations on integer lattices. Many

of the nice features of representation theory on vector spaces no longer hold. In particular,

there is no longer any unique decomposition into a sum of irreducible representations. Since

the actual integer representations are so complicated, a nice way to classify them is via

their group homology and group cohomology. This is entirely analogous to the study of

manifolds using their homology and cohomology groups:

Homology and cohomology

in topology

Group homology and

group cohomology

Manifold X Group G

Coefficients C = Z, R,

C, twisted coefficients, . . .
Group representation M

H∗(X,C), H∗(X,C) H∗(G,M), H∗(G,M)

An inevitably confusing part of the computation below is that it involves both the “topo-

logical homology” and the group homology. Specifically, we need to consider the case

where the G-representation is one of the topological homology groups of X. Then, for this

representation, we must determine the group homology.
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Let us start by defining the group homology and group cohomology. Take any repre-

sentation M of a finite group G on an integer lattice.9 In particular, we are interested in the

cases where M is either Z (the trivial representation), R, R∨, or H3. The representation

defines a bundle M̃ of lattices over the classifying space BG through its holonomy around

π1(BG) = G. The group (co)homology is defined to be the sheaf (co)homology,

H∗

(
G,M

)
= H∗

(
BG, M̃

)
, H∗

(
G,M

)
= H∗

(
BG, M̃

)
. (4.3)

This is a formal, but rather unhelpful definition of group homology and cohomology. How-

ever, although defined abstractly via classifying spaces, the actual group homology groups

are very computable. All one has to do is compute the cohomology (kernel modulo image)

of a certain complex, see [47, 48]. The boundary maps are given explicitly in terms of the

G-representation matrices. Computing kernel modulo image then boils down to finding

the Smith normal form of the boundary maps, which we calculate using Maple. Basic

properties include

• H0(G,M) = MG, the invariant subspace.

• H0(G,M) = MG, the coinvariants (See 4.3)

• H i(G,M) = 0 = Hi(G,M) for i < 0.

• H i(G,M) and Hi(G,M) are finite Abelian groups for i > 0.

Finally, note that any Z3 × Z3 representation restricts to a Z3 representations for each

choice of Z3 ⊂ Z3 × Z3. We are going to need these in the following. Let us write

G = Z3 × Z3 = G1 × G2 = {g1, g
2
1 , g

3
1 = 1} × {g2, g

2
2 , g3

2 = 1}. (4.4)

Of course, there is also a third (diagonal) Z3 subgroup of Z3 × Z3, which we denote by G12 =

{1, g1g2, g
2
1g2

2}. For example, restriction of the Z3 × Z3-representation R, see eq. (3.26),

then defines three Z3-representations

R1 = R|G1, R2 = R|G2 , R12 = R|G12 ∈ Z3–Rep (4.5)

corresponding to these three Z3 subgroups. There are the analogous restrictions of R∨ and

H3.

4.2 Invariant cohomology

We start by computing the invariant cohomology of X̃ . This is also the degree zero group

cohomology of the topological cohomology of X̃ ,

H i
(
X̃, Z

)G
= H0

(
H i

(
X̃, Z

))
. (4.6)

In particular, let us discuss the case i = 2. The invariants of a G = Z3 × Z3 group

representation are simple to compute. All one has to do is find the kernel of id−g1 and

9M could also have Z-torsion, that is, be of the form Zn ⊕Zr1
⊕ · · · ⊕Zrk

. However the representations

we are interested in will be of the form Zn only.
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id−g2, which is a straightforward linear algebra exercise. For the dP9 base surfaces, one

obtains10

H2
(
Bi, Z

)G
≃ H2

(
Bi, Z

)G
= span

{
f, t

}
(4.7)

where we defined11

t = − 3σ − 3f + θ11 + θ21 + 2θ31 + 2θ32 + 3θ41 + θ42 + 3µ + 3ν

= 5f + 5σ − 2α1 − α2 + α8.
(4.8)

On the Calabi-Yau threefold X̃ , the degree-2 invariant cohomology group is then (see [35])

H2
(
X̃, Z

)G
≃ H4

(
X̃, Z

)G
= span

{
π−1

1 (f) = π−1
2 (f), π−1

1 (t), π−1
2 (t)

}
. (4.9)

Let us define the invariant cohomology generators to be12

φ = c1

(
O

(
π−1

1 (f)
))

= c1

(
O

(
π−1

2 (f)
))

,

τ1 = c1

(
O

(
π−1

1 (t)
))

, τ2 = c1

(
O

(
π−1

2 (t)
))

∈ H2
(
X̃, Z

)
,

(4.10)

so that

H2
(
X̃, Z

)G
≃ H4

(
X̃, Z

)G
= spanZ

{
φ, τ1, τ2

}
. (4.11)

The triple intersection numbers are encoded in the products of φ, τ1, τ2. One finds that

Hev
(
X̃, Z

)G
= Z[τ1, τ2, φ]

/ 〈
φ2, τ3

1 , τ3
2 , τ1φ = 3τ2

1 , τ2φ = 3τ2
2

〉
. (4.12)

Similarly, one can compute the invariant part under the G = Z3 × Z3 action of all coho-

mology groups of X̃ . We find that

H0
(
H i

(
X̃, Z

))
= H i

(
X̃, Z

)G
=





Z i = 6

0 i = 5

Z3 i = 4

Z8 i = 3

Z3 i = 2

0 i = 1

Z i = 0.

(4.13)

As far as cohomology with real (or complex) coefficients is concerned, the cohomology

of the quotient is simply the invariant cohomology on the covering space. That is, for

example,

H2
(
X̃, R

)G
= spanR

{
φ, τ1, τ2

}
= R3 ⇒ H2

(
X, R

)
= R3, (4.14)

and, in particular, h11(X) = 3. However, determining the cohomology with integral coef-

ficients on X is far more difficult and will be the subject of 5.

10The middle dimensional homology is self-dual. On B1, B2 this is in degree 2. This is why we are not

careful in distinguishing the curves on Bi and their Poincaré duals here.
11Geometrically, t is the pull-back of the hyperplane divisor via the blow-up map Bi → P2.
12Again, we explicitly write the identification H2 ≃ H4 as c1

`
O(−)

´
. This identification will be implicit

in the future.
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4.3 Coinvariant homology

The dual notion to invariant cohomology is coinvariant homology, also known as the degree

zero group homology group of the homology groups of X̃,

Hi

(
X̃, Z

)
G

= H0

(
Hi

(
X̃, Z

))
. (4.15)

Since we are mainly interested in curves, we are going to consider the i = 2 case in detail. It

turns out that there is a clear reason why the coinvariant curves are of particular interest.

To see this, consider the G = Z3 × Z3-quotient map

q : X̃ → X. (4.16)

This map of manifolds determines the push-forward q∗ of homology groups as follows. Pick

any 2-cycle C̃ ⊂ X̃ , and let us denote its image by C = q
(
C̃

)
⊂ X.

• If dimR C < 2, then q∗
(
C̃

)
= 0.

• If q| eC : C̃ → C is one-to-one, then q∗
(
C̃

)
= C.

• If q| eC : C̃ → C is n-to-one, then q∗
(
C̃

)
= nC.

One tautological property of the push-forward is that

q∗
(
C̃

)
= q∗

(
g(C̃)

)
∀g ∈ G, C̃ ∈ H2

(
X̃, Z

)
. (4.17)

In other words,

q∗

(
C̃ − g(C̃)

)
= 0 ∀g ∈ G, C̃ ∈ H2

(
X̃, Z

)
. (4.18)

Put yet differently, there are obvious relations

I = spanZ

{
C̃ − g(C̃)

∣∣∣ g ∈ G, C̃ ∈ H2(X̃, Z)
}
⊂ H2

(
X̃, Z

)
(4.19)

that push forward to zero. The quotient by these relations is called the coinvariant homol-

ogy,

H2

(
X̃, Z

)
G

= H2

(
X̃, Z

)/
I. (4.20)

The push-forward map obviously factorizes

H2

(
X̃, Z

) q∗ //

mod I

¿¿9
99

99
99

99
9

H2

(
X, Z

)

H2

(
X̃, Z

)
G

q̂∗

BB¦¦¦¦¦¦¦¦¦¦

(4.21)

One nice set of generators for the relations I using the notation of eq. (3.25) is

σ×θij = σ×θ11 ∀i = 1, 2, 3, 4; j = 0, 1, 2; (4.22)

θij×σ = θ11×σ ∀i = 1, 2, 3, 4; j = 0, 1, 2; (4.23)

σ×f = 3σ×θ11, f×σ = 3 θ11×σ, (4.24)

2σ×σ = µ×σ + σ×µ, σ×σ + ν×σ = 2σ×ν, (4.25)

3
(
σ×µ − σ×σ

)
= 0, 3

(
σ×ν − σ×σ

)
= 0. (4.26)
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Interestingly, the last two relations can only be obtained with an overall factor of 3, but

not without! For example, take

C̃1 = 2σ×θ31 − 2σ×θ41 + θ21×σ + θ31×σ + 3µ×σ − 3 ν×σ,

C̃2 = 2σ×θ32 + 2σ×θ41 − 2 θ31×σ − θ32×σ − θ41×σ − θ42×σ,
(4.27)

then

C̃1 − g1

(
C̃1

)
+ C̃2 − g2

(
C̃2

)
= 3

(
σ×µ − σ×σ

)
. (4.28)

We conclude that the coinvariant homology of X̃ can be written as

H2

(
X̃, Z

)
G

=
(
σ×θ11

)
Z ⊕

(
θ11×σ

)
Z ⊕

(
σ×σ

)
Z

⊕
(
σ×µ − σ×σ

)
Z3 ⊕

(
σ×ν − σ×σ

)
Z3

≃ Z3 ⊕ Z3 ⊕ Z3.

(4.29)

Moreover, the push-downs of the generating curves have clear geometric interpretations:

• X is again elliptically fibered over B1/G1 and B2/G2. The homology class of the

fiber is q∗(θ11×σ) and q∗(σ×θ11), respectively.

• Due to the two independent elliptic fibrations, X is also fibered by Abelian surfaces

X → P1. Note that, since the G action on X̃ is by translation along fibers, it does

not act on the base P1. The zero section is q∗(σ×σ).

• The torsion curves q∗(σ×µ− σ×σ) and q∗(σ×ν − σ×σ) are differences of sections of

the Abelian surface fibration.

Similarly to the above, we have computed all of the coinvariant homology groups of X̃

with respect to G = Z3 × Z3, and found

H0

(
Hi

(
X̃, Z

))
= Hi

(
X̃, Z

)
G

=





Z i = 6

0 i = 5

Z3 ⊕ Z3 i = 4

Z8 ⊕
(
Z3

)4
i = 3

Z3 ⊕ Z3 ⊕ Z3 i = 2

0 i = 1

Z i = 0.

(4.30)

Recall that, modulo torsion, the invariant (co)homology of X̃ is the (co)homology

of X. Is the coinvariant homology of X̃ exactly equal to the homology of the quotient

X, including the torsion subgroups? In general, this is not an easy question, and one

needs extra generators and extra relations. However, as we will show in 5, in degree 2 the

coinvariant homology does capture the whole torsion information, that is

q̂∗

[
H2

(
X̃, Z

)
G, tors︸ ︷︷ ︸

=Z3⊕Z3

]
= H2

(
X, Z

)
tors

= Z3 ⊕ Z3. (4.31)

On the other hand, the free part H2(X̃, Z)G, free ≃ Z3 does not push down to the whole

H2(X, Z), as we will discuss later in detail.
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4.4 Group (co)homology groups

So far, we have only computed the degree 0 group homology and group cohomology groups

of the representations R, R∨, H3 in eq. (4.1). However, in order to compute the homology

of the quotient X, which will be done in the next section, we also need the higher group

homology and group cohomology groups.

Because the case of a cyclic group (Z3) is simpler, let us first consider the restriction

of R, R∨, H3 to different Z3 subgroups of G = Z3 × Z3. Since we have the group action

given in terms of explicit integer matrices, finding any particular group (co)homology

group is just a linear algebra exercise, see 4.1. Combined with the fact that the positive

degree cohomology groups of a cyclic group are 2-periodic, this determines all Z3 group

(co)homology groups. We have computed all of these group (co)homology groups, and

found that they are

Hj
(
Z3, Ri

)
= Hj

(
Z3, R

∨
i

)
≃





Z3 ⊕ Z3 j = 2k

Z3 j = 2k + 1

Z7 j = 0

Hj

(
Z3, Ri

)
= Hj

(
Z3, R

∨
i

)
≃





Z3 j = 2k

Z3 ⊕ Z3 j = 2k + 1

Z7 ⊕ Z3 j = 0

(4.32)

and

Hj
(
Z3,H3i

)
= Hj

(
Z3,H3∨i

)
≃





(
Z3

)6
j = 2k

(
Z3

)2
j = 2k + 1

Z16 j = 0

Hj

(
Z3,H3i

)
= Hj

(
Z3,H3∨i

)
≃





(
Z3

)2
j = 2k

(
Z3

)6
j = 2k + 1

Z16 ⊕ Z3 ⊕ Z3 j = 0

(4.33)

independently of whether i = 1, 2, or 12.

Finally, we will need the group homology and group cohomology of Z3 × Z3. We have

already determined the degree zero part in Subsections 4.2 and 4.3, but will need some of

the higher degrees in the following. They turn out to be

i 0 1 2 3 4 6 · · ·

Hi

(
G,R

)
Z3 ⊕ (Z3)

2 (Z3)
5 (Z3)

5 (Z3)
8 (Z3)

8 (Z3)
11 · · ·

Hi

(
G,R∨

)
Z3 ⊕ Z3 (Z3)

4 (Z3)
4 (Z3)

7 (Z3)
7 (Z3)

10 · · ·

H i
(
G,R

)
Z3 Z3 (Z3)

4 (Z3)
4 (Z3)

7 (Z3)
7 · · ·

H i
(
G,R∨

)
Z3 (Z3)

2 (Z3)
5 (Z3)

5 (Z3)
8 (Z3)

8 · · ·

Hi

(
G,H3

)
Z8 ⊕ (Z3)

4 (Z3)
12 (Z3)

9 (Z3)
17 (Z3)

14 (Z3)
22 · · ·

H i
(
G,H3

)
Z8 (Z3)

4 (Z3)
12 (Z3)

9 (Z3)
17 (Z3)

14 · · ·

(4.34)

Interestingly, this proves that the representation R is not isomorphic to its dual.
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5. Homology and cohomology

5.1 General form

We now have all the information necessary to compute the homology and cohomology

groups with integer coefficients on X̃/Z3 and X̃/(Z3 × Z3). However, since this involves

many mathematical details, we first preview the results. The non-mathematically oriented

reader is advised to peruse this subsection only, skipping the remainder of 5.

We begin by considering the integral homology groups. As we have already mentioned,

the rank of the integral homology of the quotient is determined by the rank of the coin-

variant homology of X̃ . For X/Z3, this can be read off from the degree-0 group homology

groups (j = 0) in eqs. (4.32) and (4.33). Similarly, the i = 0 column in eq. (4.34) provides

this information for X = X̃/(Z3 × Z3). However, this only determines the free part of the

homology of X and gives us no information on the torsion part, which must be computed

in another way. Note that, although there are in principle seven non-vanishing homology

groups on a 6-dimensional manifold, only four of them can contain a torsion subgroup.

Moreover, using Poincaré duality and the Universal Coefficient Theorem, there are only

two distinct torsion subgroups, each occurring twice in the homology of the 6-dimensional

manifold [49]. In our case, one of the torsion subgroups is simply determined from the

group action and the ensuing fundamental groups π1(X̃/Z3) = Z3 and π1(X) = Z3 ⊕ Z3.

We denote the remaining unknown finite subgroup by T3 and T33, respectively. Putting all

of this information together, the integral homology of the quotients must be of the form

Hi

(
X̃

/
Z3, Z

)
≃





Z

0

Z7 ⊕ Z3

Z16 ⊕ T3

Z7 ⊕ T3

Z3

Z,

Hi

(
X̃

/
(Z3 × Z3), Z

)
≃





Z i = 6

0 i = 5

Z3 ⊕
(
Z3

)2
i = 4

Z8 ⊕ T33 i = 3

Z3 ⊕ T33 i = 2
(
Z3

)2
i = 1

Z i = 0.

(5.1)

In the remainder of this section, we are going to compute T3 and T33. The result will be

that

T3 ≃ Z3, T33 ≃ Z3 ⊕ Z3. (5.2)

In fact, we can be more precise and identify the geometry of the torsion curves. We

will see that the torsion curves are images of curves on the covering space X̃, something

that is not automatic. Explicitly, the push-forward by the quotient maps q̂ : X̃ → X̃/Z3

and q : X̃ → X is an isomorphism

q̂∗ : H2

(
X̃, Z

)
Z3,tors

∼
−→ H2

(
X̃/Z3, Z

)
tors

,

q∗ : H2

(
X̃, Z

)
G,tors

∼
−→ H2

(
X, Z

)
tors

(5.3)

between the torsion parts of coinvariant homology on X̃ and the homology on the quo-

tient. Note that the free parts of the respective homology groups are equal as well, raising
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the obvious question whether the push-forward is an isomorphism for the whole integral

homology. For the intermediate quotient, X̃/Z3, this is indeed so and

q̂∗ : H2

(
X̃, Z

)
Z3

∼
−→ H2

(
X̃/Z3, Z

)
. (5.4)

However, on X there is the following subtlety. The degree-2 homology classes on any simply

connected manifold, for example X̃ , can always be represented by spheres and, therefore,

the image of q∗ is a linear combination of spheres. But on X not every degree-2 homology

class can be represented by spheres. To make this more precise, we denote the spherical

homology classes by Σ2(X, Z). A convenient definition is to start with π2(X), the second

homotopy group of X, and look at its image in homology, that is,

Σ2(X, Z) = img
[
π2(X)

]
⊂ H2(X, Z). (5.5)

In our case, it turns out that

Σ2

(
X̃/Z3, Z

)
= H2

(
X̃/Z3, Z

)
,

Σ2

(
X, Z

)
tors

= H2

(
X, Z

)
tors

,
(5.6)

while

Σ2

(
X, Z

)
free

( H2

(
X, Z

)
free

(5.7)

is a sublattice of index 3. To summarize, the push-forward by the quotient maps actually

is an isomorphism

q̂∗ : H2

(
X̃, Z

)
Z3

∼
−→ Σ2

(
X̃/Z3, Z

)
, q∗ : H2

(
X̃, Z

)
G

∼
−→ Σ2

(
X, Z

)
, (5.8)

between the coinvariant homology and the homology classes that are representable by linear

combinations of spheres. Since we are only interested in the genus 0 worldsheet instantons

for the purposes of this paper, we actually only need Σ2 and not H2.

As a final remark, note that X is a non-toric example where the mirror symmetry

conjecture of [3] holds: Let Y and Y ∗ be a pair of mirror Calabi-Yau threefolds. Then it

is conjectured13 that

H1

(
Y, Z

)
tors

= H2

(
Y ∗, Z

)
tors

. (5.9)

Previously [3], this has been checked for the 16 toric hypersurfaces with non-trivial funda-

mental group. In those 16 cases H1

(
Y, Z

)
tors

= π1(Y ) is non-trivial while H2

(
Y, Z

)
tors

= 0,

and their mirror manifolds satisfy the above relation. In our case, X is ,presumably, self-

mirror and, in contrast to the toric hypersurface case, its mirror is again a free quotient. The

homology of X again satisfies the above mirror relation H1

(
X, Z

)
tors

= T33 = H2

(
X, Z

)
tors

.

13This mirror conjecture can be written in terms of integral cohomology as well. The equivalent statement

then is H2(Y, Z)tors = H3(Y ∗, Z)tors.
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5.2 Spectral sequences

We are now going to compute the remaining unknown torsion subgroups T3, T33 in eq. (5.1).

To do so, we will rely on two spectral sequences which we will review below. Applying

one of these spectral sequences in 5.3, we will compute the integral cohomology of X̃/Z3.

Using the other spectral sequence, we will then attempt to compute H2(X, Z) in 5.4 and

find that there are two possible answers. Finally, in 5.5, we resolve this ambiguity and

determine the integral homology and cohomology of X.

The cohomology version of the aforementioned spectral sequences is [50, 51]

Theorem 1 (Leray-Serre spectral sequence). For any manifold Y with free14 G ac-

tion, there is a cohomology spectral sequence

Ep,q
2 = Hp

(
G,Hq

(
Y, Z

))
=⇒ Hp+q

(
Y/G, Z

)
. (5.10)

In particular, E0,q
2 = Hq(Y, Z)G is the invariant cohomology.

The analogous sequence for homology groups is [52]

Theorem 2 (Cartan-Leray spectral sequence). For any manifold Y with free G ac-

tion, there is a homology spectral sequence

E2
p,q = Hp

(
G,Hq

(
Y, Z

))
=⇒ Hp+q

(
Y/G, Z

)
. (5.11)

In particular, E2
0,q = Hq(Y, Z)G is the coinvariant homology.

Hence, the Cartan-Leray spectral sequence describes the precise relationship between

coinvariant homology and the homology of the quotient. Dually, the Leray-Serre spectral

sequence describes the precise relationship between invariant cohomology and the coho-

mology of the quotient.

5.3 The partial quotient

As a warm-up exercise, and since we are going to need some of these results in the following,

we begin with the computation of the cohomology of the partial quotient X̃/Gi, where

Gi ≃ Z3 (see 4.1). It turns out that nothing depends on whether we consider G1, G2, or

G12, so we need not make any distinction between them in this subsection. Note that, while

the Z3 × Z3 group action is not toric, any single Z3 subgroup can be chosen to act only by

phase multiplications. For example, in the coordinates used in eqs. (2.2a) and (2.2b), the

g1 action, eq. (2.3a), is toric. Hence, the partial quotient can also be treated using toric

methods, see section 4 in Part B [30]. In particular, its integral homology groups could be

computed as in [3].

We use the Leray-Serre spectral sequence to compute the cohomology of X/Gi starting

from the G1 group action on the cohomology of X̃ . The E2 tableau consists of the group

14More generally, this spectral sequence computes the G-equivariant cohomology. For free group actions,

this is the same as the cohomology of the quotient.
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cohomology groups computed in eqs. (4.32) and (4.33),

Ep,q
2

(
X̃/Gi

)
=

q=6 Z 0 Z3 0 Z3 0 Z3 0 · · ·

q=5 0 0 0 0 0 0 0 0 · · ·

q=4 Z7 Z3 Z2
3

((QQQQQQQ Z3

((QQQQQQQ Z2
3 Z3 Z2

3 Z3 · · ·

q=3 Z16 Z2
3 Z6

3 Z2
3 Z6

3

((QQQQQQQ Z2
3

((QQQQQQQ Z6
3 Z2

3 · · ·

q=2 Z7 Z3 Z2
3 Z3 Z2

3 Z3 Z2
3 Z3 · · ·

q=1 0 0 0 0 0 0 0 0 · · ·

q=0 Z 0 Z3 0 Z3 0 Z3 0 · · ·
//

OO

p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7

. (5.12)

The E2 tableau is obviously not bounded to the right. However, in the E∞ tableau all

entries with p + q > 6 have to vanish since Hp+q
(
X̃/Z3, Z

)
= 0 if p + q > 6. Hence,

the superfluous entries must be removed by higher differentials. Since the E2 tableau is

2-periodic for sufficiently large p, we first consider the case where every differential starts

or ends in the periodic range. Counting the ranks of possible differentials, the entries can

only be completely removed if every non-zero differential either starts or ends in the q = 3

row. And, moreover, each such differential starting or ending at q = 3 must have maximal

rank.

This argument determines all differentials for sufficiently large p, but we also need

the differentials for small p. Note that the cohomology Leray-Serre spectral sequence is

actually a spectral sequence of H∗(Z3, Z)-algebras. Therefore, the differentials

dp,q
r : Ep,q

r −→ Ep+r,q−r+1
r (5.13)

for p ≫ 0 are all induced from d0,q
r , d1,q

r , and multiplication with the generator in E2,0
r .

Hence we know all d2 differentials, not only the ones with p ≫ 0. Therefore, we determine

the next tableau to be

Ep,q
3 =

q=6 Z 0 Z3 0 Z3 0 Z3 0 · · ·

q=5 0 0 0 0 0 0 0 0 · · ·

q=4 Z7 0 0 0 0 0 0 0 · · ·

q=3 Z16 Z3 Z2
3 0 Z2

3 0 Z2
3 0 · · ·

q=2 Z7 Z3

d3
PPP

PPP

''PPP
PPP

0 0 0 0 0 0 · · ·

q=1 0 0 0 0 0 0 0 0 · · ·

q=0 Z 0 Z3 0 Z3 0 Z3 0 · · ·
//

OO

p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7

. (5.14)

The d3 drawn above must vanish, since the range has to survive until d0,3
4 : Z16 → Z3.
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Hence, Ep,q
3 = Ep,q

4 and the d4-cohomology is

Ep,q
5 = Ep,q

∞ =

q=6 Z 0 0 0 0 0 0 0 · · ·

q=5 0 0 0 0 0 0 0 0 · · ·

q=4 Z7 0 0 0 0 0 0 0 · · ·

q=3 Z16 Z3 Z3 0 0 0 0 0 · · ·

q=2 Z7 Z3 0 0 0 0 0 0 · · ·

q=1 0 0 0 0 0 0 0 0 · · ·

q=0 Z 0 Z3 0 0 0 0 0 · · ·
//

OO

p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7

. (5.15)

Looking at the diagonals, there are no extension ambiguities and we can read off the

cohomology. The Universal Coefficient Theorem then fixes the homology. The result is

H i
(
X̃

/
Z3, Z

)
≃





Z

Z3

Z7 ⊕ Z3

Z16 ⊕ Z3

Z7 ⊕ Z3

0

Z

⇒ Hi

(
X̃

/
Z3, Z

)
≃





Z i = 6

0 i = 5

Z7 ⊕ Z3 i = 4

Z16 ⊕ Z3 i = 3

Z7 ⊕ Z3 i = 2

Z3 i = 1

Z i = 0.

(5.16)

Hence, we have determined T3 in eq. (5.1) to be

T3 ≃ Z3. (5.17)

Now that we know the result, let us return to the corresponding Cartan-Leray spectral

sequence. The bottom part of the E3 tableau is

E3
p,q

(
X̃/Gi

)
=

q=2 Z7 ⊕ Z3hh

d3
(i)

PPPPPPP

PPP
PPP

...
...

...
... . .

.

q=1 0 0 0 0 0 · · ·

q=0 Z Z3 0 Z3 0 · · ·

//

OO

p=0 p=1 p=2 p=3 p=4 ···

. (5.18)

From the cohomology computation, we know that the torsion curve Z3 has to survive15 to

H2

(
X̃/Gi, Z

)
= H2

(
X̃, Z

)
Gi

≃ Z7 ⊕ Z3. (5.19)

Hence, the above differential

d3
(i) : E3

3,0

(
X̃/Gi

) 0
−→ E3

0,2

(
X̃/Gi

)
(5.20)

must vanish. We will need this result in the following.

15That is, must not be removed by differentials or extensions.
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5.4 The full quotient

We now compute the degree-2 homology groups of X = X̃/G with G = Z3 × Z3 using the

Cartan-Leray spectral sequence. The bottom part, which does not depend on d2, is

E2
p,q

(
X̃/G

)
=

E3
p,q

(
X̃/G

)
=

q=2 Z3 ⊕ Z3 ⊕ Z3ff

d3

...
...

...
... . .

.

q=1 0 0 0 0 0 · · ·

q=0 Z
(
Z3

)2
Z3

(
Z3

)3 (
Z3

)2 · · ·

//

OO

p=0 p=1 p=2 p=3 p=4 ···

. (5.21)

Knowing the differential in the X̃/Gi spectral sequence above, we can determine the dif-

ferential d3 in the X̃/G spectral sequence as follows. The quotient map

qi : X̃/Gi −→ X̃/G (5.22)

induces a morphism of spectral sequences

qi∗ :
{
Er

•,•

(
X̃/Gi

)
, dr

(i)

}
−→

{
Er

•,•

(
X̃/G

)
, dr

}
. (5.23)

In particular, for r = 3 there is a commutative diagram

Z3 ≃ E3
3,0

(
X̃/Gi

) d3
(i)

=0
//

Gi⊂G
²²

E3
0,2

(
X̃/Gi

)
≃ Z3 ⊕ Z7

qi∗

²²²²

Z3 ⊕ Z3 ⊕ Z3 ≃ E3
3,0

(
X̃/G

) d3
// E3

0,2

(
X̃/G

)
≃ Z3 ⊕ Z3 ⊕ Z3 .

(5.24)

The E3
p,0 terms are just group homology, and only depend on the group. It is fairly clear

that the inclusion G1 ⊂ G and G2 ⊂ G map onto two of the three Z3 summands in H3(G; Z).

A bit of homological algebra, see C, shows that the inclusion of the diagonal G12 ⊂ G then

maps onto the third summand. So we can find 3 generators of E3
3,0

(
X̃/G

)
= H3(G, Z)

which are induced from some E3
3,0

(
X̃/Gi

)
. Moreover,

qi∗ : H2

(
X̃, Z

)
Gi︸ ︷︷ ︸

=E3
0,2

(
eX/Gi

)
−→ H2

(
X̃, Z

)
G︸ ︷︷ ︸

=E3
0,2

(
eX/G

)
(5.25)

is surjective, since enlarging the group only adds more relations to the coinvariant homology.

Therefore, commutativity forces

d3 = 0 . (5.26)

To summarize, we found that the following entries in the tableau eq. (5.21) survive to

r = ∞,

E∞
p,q

(
X̃/G

)
=

q=2 Z3 ⊕ Z3 ⊕ Z3
...

... . .
.

q=1 0 0 0 · · ·

q=0 Z
(
Z3

)2
Z3 · · ·

//

OO

p=0 p=1 p=2 ···

. (5.27)
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Having determined the endpoint of the Cartan-Leray spectral sequence for X̃/G, we

still do not quite know its homology. We have to solve one extension ambiguity, which

takes the form of the short exact sequence

0 −→ H2

(
X̃, Z

)
G︸ ︷︷ ︸

≃Z3⊕Z3⊕Z3

q∗
−→ H2

(
X̃

/
G, Z

)
−→ H2

(
G, Z

)
︸ ︷︷ ︸

≃Z3

−→ 0 , (5.28)

where the first map q∗ is just the pushforward by the Z3 × Z3 quotient map

q : X̃ −→ X̃/G = X. (5.29)

Depending on which extension is realized, the homology group could either be

H2

(
X, Z

)
≃ Z3 ⊕

(
Z3

)2
or Z3 ⊕

(
Z3

)3
. (5.30)

This leaves two possibilities, either T33 = (Z3)
2 or T33 = (Z3)

3, for the torsion group in

eq. (5.1). In the next subsection, we will fix this ambiguity.

5.5 A higher differential and final result

Recall that there is also a Leray-Serre spectral sequence for the cohomology of the quotient

X = X̃/G. Its E2 tableau reads

Ep,q
2

(
X̃/G

)
=

...
...

...
...

...
...

... . .
.

q=3 Z8 Z4
3 Z12

3 Z9
3 Z17

3 Z14
3 · · ·

q=2 Z3

d3

NNNNNNN

''NNN
NNN

N

Z2
3 Z5

3 Z5
3 Z8

3 Z8
3 · · ·

q=1 0 0 0 0 0 0 · · ·

q=0 Z 0 Z2
3 Z3 Z3

3 Z2
3 · · ·

//

OO

p=0 p=1 p=2 p=3 p=4 p=5 ···

. (5.31)

With this in mind, there are two dual ways of fixing the ambiguity encountered in the

previous subsection:

1. Identify the short exact sequence eq. (5.28) with the sequence [53, 54]

0 −→ Σ2

(
X̃/G, Z

)
−֒→ H2

(
X̃

/
G, Z

)
−→ H2

(
G, Z

)
−→ 0, (5.32)

where Σ2 are the homology classes of degree 2 which are representable by spheres, see

eq. (5.5). If one can find a higher genus holomorphic curve in X̃/G whose homology

class is not representable by spheres, then the short exact sequence does not split.

This way to fix the ambiguity was used in [54] for a certain quotient of the quintic.

2. If the differential d3 : E0,2
3 → E3,0

3 in eq. (5.31) is non-trivial, then E3,0
∞ = 0 and the

torsion part H3
(
X̃/G, Z

)
tors

is at most E1,2
2 = (Z3)

2. Hence the second possibility in

eq. (5.30) would be ruled out, fixing the ambiguity.
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We will follow the latter route and compute

d3 : H2
(
X̃, Z

)G

︸ ︷︷ ︸
≃Z3

−→ H3
(
G, Z

)
︸ ︷︷ ︸

≃Z3

. (5.33)

Note that we can identify two key objects with certain line bundles on X̃. Recall the

correspondence between H2
(
X̃, Z

)
and line bundles via the first Chern class, 3.4:

• H2
(
X̃, Z

)G
are the G-invariant line bundles.

• Evaluating the Leray-Serre spectral sequence, eq. (5.31), yields

ker
(
d3

)
⊕

(
Z3

)2
=


 ⊕

p+q=2

Ep,q
∞


 = H2

(
X, Z

)
. (5.34)

Pulling back to X̃ via the quotient map kills the torsion part (Z3)
2, and we obtain

q∗
[
H2(X, Z)

]
= ker

(
d3

)
⊂ H2

(
X̃, Z

)G
⊂ H2

(
X̃, Z

)
(5.35)

But the pull-backs of line bundles on the quotient X = X̃/G are precisely the G-

equivariant line bundles on X̃ . Hence, ker
(
d3

)
are the G-equivariant line bundles.

The differential d3 is either zero or surjective. Therefore, ker(d3) is either all of H2(X̃, Z)G

or an index-3 sublattice, respectively. In fact, the latter is true:

Example 1. Consider the line bundle

O eX
(
τi

)
= O eX

(
π−1

i (t)
)

= π∗
i

(
OBi

(t)
)

(5.36)

on X̃, which is pulled back from one of the base dP9 surfaces Bi. This line bundle is

G-invariant but not G-equivariant.

Proof. The line bundle is invariant because π−1
i (t) is an invariant divisor class, see eq. (4.9).

It remains to show that the line bundle is not equivariant. Assume, on the contrary, that

π∗
i

(
OBi

(t)
)

were equivariant. Then

πi∗

[
π∗

i

(
OBi

(t)
)]

= OBi
(t) (5.37)

would be equivariant, and hence OBi
(t)|f = Of (t ·f) = Of

(
3{pt.}

)
would be G-equivariant.

But G ≃ Z3 × Z3 acts on f ≃ T 2 by two independent order-3 translations, so any equiv-

ariant bundle must have degree divisible by 9. Hence the degree 3 line bundle Of (t · f)

cannot be equivariant, contradicting our assumption.

To summarize, the differential d3 had to remove the invariant-but-not-equivariant line

bundles when descending to X and ,hence, had to be nontrivial. Therefore, the torsion

part H3
(
X̃, Z

)
tors

≃ H2

(
X̃, Z

)
tors

in eq. (5.30) can be at most (Z3)
2 and, therefore,

H2

(
X, Z

)
≃ Z3 ⊕

(
Z3

)2
, H3

(
X, Z

)
≃ Z8 ⊕

(
Z3

)2
. (5.38)
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It follows that we have determined T33 in eq. (5.1) to be

T33 ≃ Z3 ⊕ Z3. (5.39)

This fixes the last ambiguity in the integral homology and cohomology of X. The final

result is

H i
(
X, Z

)
= H6−i

(
X, Z

)
≃





Z i = 6

Z3 ⊕ Z3 i = 5

Z3 ⊕ Z3 ⊕ Z3 i = 4

Z8 ⊕ Z3 ⊕ Z3 i = 3

Z3 ⊕ Z3 ⊕ Z3 i = 2

0 i = 1

Z i = 0.

(5.40)
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Part II

Instantons

6. Quotients of the quintic

6.1 Curves and Kähler classes

Having found the complete integral homology and cohomology groups including torsion, we

turn to the second topic of this paper, that is, computing the Gromov-Witten invariants,

or instanton numbers, on X = X̃/(Z3 × Z3). We begin by reviewing the simpler and well-

studied case of the quintic Calabi-Yau threefold and its Z5 and Z5×Z5 quotients. Although

the quintic and its quotients do not have torsion curves, we will encounter some subtleties

associated with the group quotients that are also relevant to our case.

In particular, consider the one-parameter family

Q =
{
z5
0 + z5

1 + z5
2 + z5

3 + z5
4 + ψ5z0z1z2z3z4 = 0

}
⊂ P4 (6.1)

of quintic threefolds. The defining equation is invariant under the Z5 × Z5 ⊂ PGL(5, C)

group action

[z0 : z1 : z2 : z3 : z4] 7→ [z1 : z2 : z3 : z4 : z0]

[z0 : z1 : z2 : z3 : z4] 7→ [z0 : e
2πi
5 z1 : e

4πi
5 z2 : e

6πi
5 z3 : e

8πi
5 z4].

(6.2)

The group action has fixed points in P4, but they do not lie on the hypersurface Q. Hence,

the quotients16 Q/Z5 and Q/
(
Z5 × Z5

)
are smooth Calabi-Yau threefolds. Let us put a

bar over quantities on the Z5 quotient and use a double bar for the Z5 × Z5 quotient,

Q̄ = Q/Z5,
¯̄Q = Q

/(
Z5 × Z5

)
= Q̄/Z5. (6.3)

The rational cohomology is always one-dimensional in each even degree, generated by the

hyperplane class of the ambient P4. However, if one keeps track of the proper normalization,

things are slightly more complicated. Moreover, there are torsion 1-cycles corresponding

to the discrete Wilson lines on the quotients.

Recall that h11(Q) = 1 and h21(Q) = 101. Note specifically that there is only a single

Kähler modulus. Thus, while the odd degree cohomology groups are fairly large, the even

degree cohomology, that is Hev = H0⊕H2⊕H4⊕H6, is very manageable. For the quintic

and its quotients they are

Hev
(
Q, Z

)
= Z[ξ2, ξ4]

/〈
ξ2
2 = 5ξ4, (dim>6)

〉
(6.4a)

Hev
(
Q̄, Z

)
= Z

[
ξ̄2, τ̄2

]/〈
5τ̄2, τ̄2

2 , τ̄2ξ̄2, (dim>6)
〉

(6.4b)

Hev
(

¯̄Q, Z
)

= Z
[
¯̄ξ2, ¯̄τ2, ¯̄ρ2,

¯̄ξ4,
¯̄ξ6

]/〈
5¯̄τ2, 5¯̄ρ2, ¯̄τ2

2 , ¯̄τ2 ¯̄ρ2, ¯̄ρ2
2,

¯̄τ2
¯̄ξ2, ¯̄τ2

¯̄ξ4, ¯̄ρ2
¯̄ξ2, ¯̄ρ2

¯̄ξ4,

¯̄ξ2
2 = 5¯̄ξ4,

¯̄ξ2
¯̄ξ4 = 5¯̄ξ6, (dim>6)

〉
,

(6.4c)

16Of course, there are 6 different Z5 subgroups in Z5 ×Z5. However, that distinction will not be relevant

in the following.
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where the subscripts on the generators are their dimension and we do not explicitly write

the relations imposed by dimension > 6 terms. Note the appearance of torsion classes τ̄2,
¯̄τ2, and ¯̄ρ2. These are the first Chern classes of flat line bundles (the Wilson lines).

The pull backs under the successive quotients can be determined by computing the

higher differentials in the Leray-Serre spectral sequence. This is tedious but straightfor-

ward, and we will not present the details. One finds that

H0 H2 H4 H6

Hev(Q, Z) = Z ⊕ ξ2Z ⊕ 0 ⊕ ξ4Z ⊕ ξ2ξ4Z

Hev
(
Q̄, Z

)
= Z

×1

OO

⊕ ξ̄2Z

×1

OO

⊕ τ̄2Z5

OO

⊕ 0 ⊕ ξ̄2
2Z

×5

OO

⊕ ξ̄3
2Z

×5

OO

Hev
(

¯̄Q, Z
)

= Z

×1

OO

⊕ ¯̄ξ2Z

×5

OO

⊕ ¯̄τ2Z5

×1

OO

⊕ ¯̄ρ2Z5

OO

⊕ ¯̄ξ4Z

×5

OO

⊕ ¯̄ξ6Z,

×5

OO

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

(6.5)

where we picked integral generators in each even cohomology group. By separating the

different degrees, one can easily read off any even cohomology group. For example,

H2(Q̄, Z) = Z ⊕ Z5 and it is generated by ξ̄2 and τ̄2. We observe that there is only a

single Kähler modulus on Q, Q̄, and ¯̄Q. However, when comparing them there is a subtlety

involving the correct integral normalization. The integral generator ξ̄2 pulls back to the

integral generator ξ2, while the integral generator ¯̄ξ2 pulls back to five times the integral

generator ξ̄2.

The corresponding Poincaré dual push downs in homology are

H0 H2 H4 H6

Hev(Q, Z) = {pt.}Z

×1

²²

⊕ CZ

×1

²²

⊕ 0

²²

⊕ DZ

×5

²²

⊕ QZ

×5

²²
Hev

(
Q̄, Z

)
= {pt.}Z

×1

²²

⊕ C̄Z

×5

²²

⊕ τ̄4Z5

×1

²²

⊕ 0

²²

⊕ D̄Z

×5

²²

⊕ Q̄Z

×5

²²
Hev

(
¯̄Q, Z

)
= {pt.}Z ⊕ ¯̄CZ ⊕ ¯̄τ4Z5 ⊕ ¯̄ρ4Z5 ⊕ ¯̄DZ ⊕ ¯̄QZ,

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

(6.6)

where C, C̄, ¯̄C and D, D̄, ¯̄D are generating curves17 and divisors, respectively. Further-

more, we denote by ¯̄τ4, ¯̄ρ4 and τ̄4 the torsion generators in H4(Q̄, Z) and H4(
¯̄Q, Z). We

observe again that, while the curve classes are abstractly the same 1-dimensional lattice

H2

(
Q, Z

)
≃ H2

(
Q̄, Z

)
≃ H2

( ¯̄Q, Z
)
≃ Z, (6.7)

17C and C̄ can be taken to be rational curves, whereas the homology class of ¯̄C can not be represented

by a rational curve [54]. ¯̄C can be represented by a genus 1 curve.
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the normalization of the curves is subtle. The Z5-quotient of the generator C is again a

generator, but the Z5-quotient of the generator C̄ is five times a generator in H2(
¯̄Q, Z).

6.2 Instantons on the quintic

We now turn to the worldsheet instanton corrections to certain Yukawa couplings. To be

more precise, we consider the E8 ×E8 heterotic string on the quintic Q (and, similarly, Q̄,
¯̄Q) with the standard embedding. This choice of gauge bundle breaks E8 → E6. Recall

that the massless E6 matter fields correspond to the bundle-valued cohomology groups

H1
(
Q,TQ

)
, H1

(
Q,TQ∨

)
= H1

(
Q,ΩQ

)
= H1,1(Q) = ξ2C (6.8)

for the 27 and 27 representations, respectively. Conveniently, there is a single 27 matter

field corresponding to H1(Q,TQ∨) and we will only consider its Yukawa couplings. These

can be computed by calculating a three-point function in the A-model18 topological string.

More precisely, the harmonic form associated with the generator ξ2 ∈ H1,1(Q) corresponds

to a chiral operator Oξ2 in the conformal field theory. Classically, the Yukawa coupling is

just the triple overlap integral of ξ2, or, equivalently, the triple intersection number of the

Poincaré dual divisor. The result is that

〈
O

3
ξ2

〉
classical

=

∫

Q
ξ2 ∧ ξ2 ∧ ξ2 =

∫

Q
5ξ2 ∧ ξ4 = 5, (6.9)

where we used the relation eq. (6.4a) and the fact that ξ2 ∧ ξ4 is the properly normalized

volume form. Due to a non-renormalization theorem, there are no perturbative corrections.

However, genus 0 worldsheet instantons can and do contribute. The triumph of mirror

symmetry was that this duality allows one to actually calculate the instanton effects. For

example, the correctly normalized three-point function for the quintic turns out to be [1]

〈
O

3
ξ2

〉
= 5 + 2875q + 4876875q2 + · · · , (6.10a)

where q = e2πit is the minimal instanton action. Similarly, the three-point function for the

Z5 and Z5 × Z5 quotient are given by [54]

〈
Ō

3
ξ̄2

〉
= 1 + 575q + 975375q2 + · · · , (6.10b)

〈 ¯̄
O

3
¯̄ξ2

〉
= 25 + 14375q5 + 24384375q10 + · · · . (6.10c)

To count the number of instantons nd of volume d, one has to compare these results

with the formal q-series for the instanton-corrected Yukawa coupling. This has the general

form [1]

〈
O

3
〉

= κ111 +

∞∑

d=1

ndd
3 qd

1 − qd
, (6.11)

18Conversely, the Yukawa couplings of the fields coming from H1(Q, TQ) are a three-point function in

the B-model.
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where κ111 is the triple intersection number. Note that each minimal curve can be wrapped

multiply times, contributing at different volumes. In the instanton expansion above, this

is already taken into account by the factor

qd

1 − qd
= qd + q2d + q3d + · · · =

∞∑

i=1

qid. (6.12)

Comparing the instanton-corrected three-point functions in eqs. (6.10a), (6.10b),

and (6.10c) to the general form of the instanton series eq. (6.11), we can read of the

non-vanishing instanton numbers

Q Q̄ ¯̄Q

κ111 = 5 κ̄111 = 1 ¯̄κ111 = 25

n1 = 2875 n̄1 = 575 = n1
5

¯̄n5 = 115 = n1
25

n2 = 609250 n̄2 = 121850 = n2
5

¯̄n10 = 24370 = n2
25

n3 = 317206375 n̄3 = 63441275 = n3
5

¯̄n15 = 12688255 = n3
25

...
...

....

(6.13)

We make two important observations, both of which apply to X = X̃/(Z3 × Z3) as well:

• The number of rational curves on the quotient of some freely acting group G is 1
|G|

times the number of corresponding rational curves on the covering space.

• Even if a curve class is primitive (not a multiple of another curve) on the covering

space, its image on the quotient can still be non-primitive.

To summarize, we first computed the relations between the degree-2 homology and coho-

mology in the quintic Q and its quotients Q̄, ¯̄Q. This allows one to compute the classical

27
3

Yukawa couplings. The classical result on the quintic can be extended to the complete

worldsheet instanton corrected three-point functions using mirror symmetry. By compar-

ing the resulting instanton expansion with the formal q-series of the Yukawa couplings, one

can read off the instanton numbers on the covering space Q. The corresponding instanton

numbers on Q̄, ¯̄Q are 1
5 and 1

25 , respectively, of the instanton numbers on Q. This last

result is true for all free quotients, and will be used in the following.

Having established these results, we now warn the reader that we will not continue

to work with the Yukawa couplings. Rather, we will calculate the genus 0 prepotential

instead. For the quintic, this amounts to the triple integral over the Kähler modulus t,

FQ,0(q) =

∫∫∫ 〈
O

3
ξ2

〉
dt3 =

1

3!
κ111t

3 + p2(t) +
1

(2πi)3

∞∑

d=1

nd Li3(q
d)

︸ ︷︷ ︸
=F

np
Q,0(q)

, (6.14)
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where p2(t) is a quadratic polynomial and Li3(q) =
∑∞

n=1
qn

n3 takes care of multi-covers of

the same curve. Clearly, the non-perturbative part F
np
Q,0(q) of the prepotential contains

the same information about the instanton numbers as the three-point functions. The real

advantage of this formulation is that there is always only one prepotential, whereas, for

example on the 19-parameter Calabi-Yau X̃ , there would be
(19+3−1

3

)
= 1330 three-point

functions. On a general Calabi-Yau threefold, Y , with r = h11(Y ) Kähler moduli t1, . . . , tr,

the prepotential is of the form

FY,0(q1, . . . , qr) =
1

3!

∑

1≤a≤b≤c≤r

κabct
atbtc + p2(t

1, . . . , tr)

+
1

(2πi)3

∑

d1,...,dr

n(d1,...,dr) Li3

(
r∏

i=1

qdi

i

)

︸ ︷︷ ︸
=F

np
Y,0(q1,...,qr)

, (6.15)

where qi = e2πiti . The three-point functions can be recovered as

〈OiOjOℓ〉 = ∂ti∂tj∂tℓFY,0(q1, . . . , qr). (6.16)

7. A-model on the covering space X̃

7.1 Curves

We now return to the main objective of this paper, which is to compute the instanton

numbers (Gromov-Witten invariants) for the Calabi-Yau threefold X defined in 2. However,

before graduating to the non-simply connected X, we first have to understand the universal

cover X̃ . Fortunately, a generic Schoen Calabi-Yau threefold, that is, the fiber product

of two generic dP9 surfaces, was studied in [29]. Using the E8 Mordell-Weil group of a

generic dP9, they expressed the prepotential in terms of E8 theta functions, see also [55].

Our covering space X̃ is such a Schoen Calabi-Yau threefold, although one with a special

Z3 × Z3 symmetry. In our case, the Mordell-Weil groups are just MW (Bi) = Z3 ⊕ Z3.

However, although the actual curves change19 as we move to a Z3 × Z3 symmetric point

in the complex structure moduli space, the instanton numbers do not jump. So we might

just as well use the instanton numbers computed for generic complex structure moduli.

In the remainder of this subsection, we will review the above A-model computation.

Let B̂1, B̂2 be two generic dP9 surfaces (12I0 Kodaira fibers), and define the fiber product

X̂ = B̂1 ×P
1 B̂2. (7.1)

The surfaces B̂i now have infinitely many sections forming the E8 root lattice

MW
(
B̂i

)
≃ ΛE8 =

({ 8
⊞
i=1

(
⊞ni

αi

) ∣∣∣ ni ∈ Z
}
,
〈
−,−

〉)
, (7.2)

19This phenomenon is already familiar from the quintic, for which there are 375 isolated curves and 50

one-parameter families at the Fermat point, while generically all 2875 = 5 · 375 + 20 · 50 are isolated.
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where we will use the notation of 3.2 for a choice of simple roots. The Calabi-Yau threefold

X̂ → P1 is fibered by Abelian surfaces, so we again have a group law on the sections. This

defines the group

MW
(
X̂

)
=

{
s1×s2

∣∣∣ s1 ∈ MW (B̂1), s2 ∈ MW (B̂2)
}

= MW
(
B̂1

)
⊕ MW (B̂2). (7.3)

Now we can describe part of the rational curves in X̂ :

• Vertical curves20 are precisely the components of singular fibers. The Abelian surface

fibration X̂ → P1 has 12 singular fibers of type I0 ×T 2 and 12 singular fibers of type

T 2 × I0, so there are 24 families. The moduli space MVert of each family is a T 2, so

χ
(
MVert

)
= 0 and they do not contribute to the instanton numbers.

• The sections in MW (X̂) are the only smooth rational curves s with s · φ = 1.

• Each (smooth) section s passes through the singular fibers of X̂ → P1. Pick, for

example, one such I0×T 2. Amongst the one-parameter family of I0, there is precisely

one Is
0 which intersects s. Therefore, s ∪ Is

0 is an isolated (reducible) rational curve.

Those curves are called pseudo-sections in [29], and all curves C with C · φ = 1 are

either sections or of this form.

• Multi-sections, that is, curves C with C · φ ≥ 2, are not yet understood.

These curves contribute to the instanton numbers with some (integral) multiplicity.

Roughly, the multiplicity is the Euler characteristic of the moduli space of the curve (this

needs to be refined if the moduli space is singular). Hence,

• The moduli space MVert of each vertical curve is a T 2, so χ
(
MVert

)
= 0 and they do

not contribute to the instanton numbers.

• Sections do not have infinitesimal deformations, Ns|X̂ = Os(−1) ⊕ Os(−1). Hence,

they contribute to the instanton numbers with multiplicity 1. The volume of such a

section is

Vs =

∫

s
J = s · J, (7.4)

where J ∈ H2
(
X̂, R

)
is the Kähler form.

• Consider a pseudo-section P consisting of a section s and covering the i-th Kodaira

fiber mi times. Then it contributes to the instanton numbers with a pre-factor

(see [29, 56])

n(P ) =
24∏

i=1

p
(
mi

)
, (7.5)

20In other words, curves that project to a point in the base P1. Put differently, curves C such that

C · φ = 0, where φ is the T 4 fiber, see eq. (4.10).
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where p(k) is the number of partitions of k ∈ Z≥. By definition, the homology class

of a pseudo-section is

P = s +

12∑

i=1

mi

(
f×σ

)
+

24∑

i=13

mi

(
σ×f

)
, (7.6)

where we labeled the Kodaira fibers such that the first 12 are in the first fiber direction

and the remaining 12 are in the other fiber direction. Hence, the volume of a general

pseudo-section is

VP =

∫

P
J =

∫

Ps

J +

12∑

i=1

mi

∫

f×σ
J +

24∑

i=13

mi

∫

σ×f
J. (7.7)

7.2 Prepotential

Using the above knowledge about the curves, one can directly write down their non-

perturbative contribution to the prepotential [29]. One obtains

F
np
eX,0

=
∑

s1×s2

∈MW (X̂)

e
2πi

R
s1×s2

ω

(
∞∑

m=0

p(m)e
2πim

R
f×σ

ω

)12 (
∞∑

n=0

p(n)e
2πin

R
σ×f

ω

)12

+ (contribution of curves with C · φ ≥ 2) (7.8)

for the genus zero contribution to the prepotential on X̃, where ω = B + iJ is the com-

plexified Kähler form. Note that multi-covers of a pseudo-section contribute at the same

order as multi-sections, which is why we did not need to include the Li3 accounting for

multi-covers at order p.

Let us define coordinates ta on the 19-dimensional Kähler moduli space as

ω = t1φ + t2
(
π−1

1 σ
)

+

8∑

i=1

ti+2
(
π−1

1 αi

)
+ t11

(
π−1

2 σ
)

+

8∑

i=1

ti+11
(
π−1

2 αi

)
, (7.9)

where we used the basis for the cohomology adapted to the E8 lattice given in eq. (3.10).

In addition, define the Fourier-transformed coordinates

p0 = e2πit1 = e
2πi

R
PD(φ) ω

,

q0 = e2πit2 , q1 = e2πit3 , . . . , q8 = e2πit10 ,

r0 = e2πit11 , r1 = e2πit12 , . . . , r8 = e2πit19 .

(7.10)

It follows that

e
2πi

R
f×σ

ω
=

8∏

i=0

qi, e
2πi

R
σ×f

ω
=

8∏

i=0

ri,

e
2πi

R
s1×s2

ω
= p0q

s1·σ
0

8∏

i=1

qs1·αi

i rs1·σ
0

8∏

i=1

rs2·αi

i , (7.11)

– 35 –



J
H
E
P
1
0
(
2
0
0
7
)
0
2
2

and, hence,

F
np
eX,0

= p0




∑

s1∈

MW (B̂1)

qs1·σ
0

8∏

i=0

qs1·αi

i







∑

s2∈

MW (B̂2)

rs2·σ
0

8∏

i=0

rs2·αi

i


×

×

(
∞∑

m=0

p(m)
8∏

i=0

qm
i

)12 (
∞∑

n=0

p(n)
8∏

i=0

rn
i

)12

+ O(p2
0). (7.12)

Finally, we note the appearance of the generating function for partitions,

P (q) =

∞∑

i=0

p(i)qi =
q

1
24

η( 1
2πi ln q)

, (7.13)

and the E8 theta function21 (using eq. (3.9))

ΘE8(q0; q1, . . . , q8) =
∑

γ∈ΛE8

q
1
2
〈γ,γ〉

0

8∏

i=1

q
〈γ,αi〉
i =

∑

s∈MW (B̂)

qσ·s+1
0

8∏

i=1

q1+s·σ−s·αi

i . (7.14)

Therefore,

F
np
eX,0

(p0, q0, . . . , q8, r0, . . . , r8) =
p0

q0r0
Ã(q0, . . . , q8)Ã(r0, . . . , r8) + O(p2

0), (7.15)

where we defined the auxiliary function

Ã(q0, . . . , q8) = ΘE8

( 8∏

i=0

qi; q
−1
1 , . . . , q−1

8

)
P

( 8∏

i=0

qi

)12

(7.16)

and the analogous expression for Ã(r0, . . . , r8). Note the occurrence of negative powers of

q0, . . . , q8, r0, . . . , r8. This is simply an artifact of working in a basis that is adapted to the

E8 lattice structure. In a basis adapted to the Mori cone and the Kähler cone, only positive

powers will appear. Nevertheless, by expanding the expression for the prepotential as a

series in the 19 variables p0, q0, . . . , q8, r0, . . . , r8 and comparing this with the general form

eq. (6.15), one can read of the instanton numbers on X̃. Clearly, the instanton numbers

will be indexed by 19 different degrees, making this expansion very cumbersome. Hence,

we will refrain from presenting them explicitly.

8. A-model for quotients

8.1 Instantons and the path integral

Before delving into the actual computation of the prepotential and instanton numbers on

the quotients of X̃, we need to understand the effect of torsion homology classes on the

21Usually, the theta function is written as ΘE8
(τ0; τ1, . . . , τ8) with qi = e2πiτi . However, we will use our

notation since we are going to work with the Fourier-transformed variables everywhere.
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instanton sum. The worldsheet instantons in question for an arbitrary Calabi-Yau threefold

Y are holomorphic maps γ : Σ → Y from the string worldsheet Σ to the target space Y .

The path integral sums over all such curves. If we ignore torsion in the homology for a

moment, then the effect of an instanton is to add a factor

eiS
[
γ : Σ → Y

]
= e2πi

R
Σ γ∗ω (8.1)

to the path integral, where S is the instanton action and

ω = B + iJ =
∑

a

(
B + iJ

)a
ea ∈ H2

(
Y, C

)
(8.2)

is the complexified Kähler class22 expanded in some suitable basis {ea} of harmonic forms.

Changing variables to

qa = e2πi(B+iJ)a

, (8.3)

the instanton factor can be written as

eiS [γ] =
∏

a

qda
a (8.4)

with exponents

da =

∫

Σ
ea ∈ Z≥. (8.5)

Here and everywhere else we assume that the chosen basis {ea} is suitably normalized and,

therefore, the exponents da are integers.

Now, let us assume that H2(Y, Z) contains some non-zero torsion part. Since everything

said so far only depends only on the integral
∫
Σ, one might at first think that the torsion

part of the homology class Σ ∈ H2(Y, Z) does not enter the path integral at all. However,

there is one fallacy in the above reasoning, namely, that the B-field need not be globally

defined. So, strictly speaking, the integral
∫
Σ B is not defined. The correct way is to think

about the instanton factor for a flat B-field, dB = 0, as a map assigning to each worldsheet

a non-zero complex number23

eiS : H2

(
Y, Z

)
→ C×, (8.6)

which can only be written in terms of an integral if one is willing to ignore a subtlety. This

subtlety [2] is that the homology classes can have torsion, that is,

H2

(
Y, Z

)
= H2

(
Y, Z

)
free

⊕ H2

(
Y, Z

)
tors

= Zr ⊕
(
Zm1 ⊕ · · · ⊕ Zmk

)
, (8.7)

where r is the rank and the mi, i = 1, . . . , k are the torsion coefficients. If there is no

torsion, that is, k = 0, then the above description is perfectly valid. However, in general

one needs in addition to the free generators

qa ∈ Hom
[
H2

(
Y, Z

)
free

, C×
]
, a = 1, . . . , r (8.8)

22Since we are really using topological strings on a Calabi-Yau threefold, there cannot be any flux. That

is, we require that dB = 0 for the purposes of this paper.
23By definition, C× = C − {0} as a multiplicative group.
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the torsion generators

bi ∈ Hom
[
H2

(
Y, Z

)
tors

, C×
]
, i = 1, . . . , k, (8.9)

where

bmi

i = 1. (8.10)

In terms of this basis, the instanton factor must be expanded to

eiS [γ] =

r∏

a=1

qda
a

k∏

i=1

bδi

i (8.11)

with integral exponents

da ∈
{
0, 1, 2, . . .

}
, δi ∈

{
0, . . . ,mi − 1

}
, (8.12)

provided that the basis qa, bi is correctly normalized. This describes the contribution of any

given instanton to the path integral. The non-perturbative correction to the prepotential,

see eq. (6.15), generalizes in the obvious way to

FY,0(q1, . . . , qr, b1, . . . , bk) =
1

3!

∑

1≤a≤b≤c≤r

κabct
atbtc + p2(t

1, . . . , tr) (8.13)

+
1

(2πi)3

∑

d1,...,dr

δ1,...,δk

n(d1,...,dr , δ1,...,δk) Li3

(
r∏

a=1

qda
a

k∏

i=1

bδi

i

)

︸ ︷︷ ︸
=F

np
Y,0(q1,...,qr, b1,...,bk)

,

Finally, let us remark on the proper normalization. In principle, the normalization of

the qa, bi has to be such that they form an integral basis for Hom
[
H2(Y, Z), C×

]
. However,

since we are only considering the genus 0 instantons in the following, one need only consider

curve classes that are representable by spheres. Therefore, we will use generators

qa ∈ Hom
[
Σ2

(
Y, Z

)
free

, C×
]
, a = 1, . . . , r,

bi ∈ Hom
[
Σ2

(
Y, Z

)
tors

, C×
]
, i = 1, . . . , k,

(8.14)

see eq. (5.5). These are more practical for our purposes, but keep in mind that they might

have to be subdivided to write the higher genus prepotential, as we saw in 6. Since we

will be interested in the prepotential for X̃ and two of its quotients, we list the names for

the generators eq. (8.14) in 1. We refer the reader to the respective sections for detailed

definitions.

8.2 Quotienting the A-model on X̃

We finally have everything in place to compute the prepotential on the quotient X = X̃/G.

On general grounds, the G = Z3 × Z3-orbits of a P1 ⊂ X̃ must be |G|=9 distinct rational

curves since there is no fixed-point free holomorphic map P1 → P1. Hence, there is a one-

to-one correspondence between one rational curve on X and a set of |G| rational curves on

X̃ , permuted by G.

Therefore, to compute the genus 0 prepotential on the quotient X, we should
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Calabi-Yau

threefold
r

Free

generators

{
m1, . . . ,mk

} Torsion

generators

X̃ 19
{
p0, q0, . . . , q8, r0, . . . , r8

}
∅ ∅

X = X̃/G1 7
{
P,Q1, Q2, Q3, R1, R2, R3

} {
3
} {

b1

}

X = X̃/G 3
{
p, q, r

} {
3, 3

} {
b1, b2

}

Table 1: Variables used in this paper to expand the prepotential for different Calabi-Yau threefolds.

1. Start with the prepotential on X̃. For the purposes of this subsection, we consider

only the terms linear in p0. This part of the prepotential was computed in eq. (7.8).

2. Impose the relations

e2πi
R

eC
ω = e

2πi
R

g( eC)
ω

(8.15)

for all g ∈ G and for all curves C̃ ∈ H2(X̃, Z) ≃ Z19.

3. Divide by |G|.

Note that setting C̃ = g(C̃) in H2(X̃, Z) yields by definition the coinvariant homol-

ogy H2(X̃, Z)G, see eq. (4.19). Now, in general, this might not be enough to describe

H2(X, Z) since there are potentially higher differentials in the Cartan-Leray spectral se-

quence, eq. (5.11). However, as we discovered in 5, there are no such subtleties in our case

and, according to eq. (5.8), the homology classes of rational curves on X are identified with

the coinvariant homology on X̃ .

So all we have to do is to implement the relation eq. (8.15) in the expression for the

prepotential on X̃, eq. (7.8). This can be done by restricting the complexified Kähler class

ω, only allowing classes that yield the same result when integrated over C̃ or g(C̃). Those

classes are precisely the G-invariant Kähler classes, see eq. (4.9). Hence, we would like to

set24

ω = t1Rφ + t2Rτ1 + t3Rτ2

= (t1R + 5t2R + 5t3R)φ

+ t2Rπ−1
1 (5σ) + t2Rπ−1

1 (−2α1) + t2Rπ−1
1 (−α2) + t2Rπ−1

1 (α8)

+ t3Rπ−1
2 (5σ) + t3Rπ−1

2 (−2α1) + t3Rπ−1
2 (−α2) + t3Rπ−1

2 (α8),

(8.17)

where we used eqs. (4.11) and (4.8). Unfortunately, this is not yet the correct way to

implement the relations in eq. (8.15). In fact, this restriction on ω is too strong. Recall

that two of the relations in the coinvariant homology, see eq. (4.22), only have to hold with

24This particular choice of generators has the added advantage that its basis elements also span the

G-invariant Kähler cone [57]

K
` eX

´G
= span

R>

˘
φ, τ1, τ2

¯
. (8.16)

As a consequence, the Fourier series of the prepotential will only contain non-negative powers.
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a certain multiplicity, namely

3
(
σ×µ − σ×σ

)
= 0, 3

(
σ×ν − σ×σ

)
= 0. (8.18)

However, demanding that ω be G-invariant enforces a stronger relation, one without the

multiplicity, and, hence, kills the torsion information.

To capture the torsion information, we need to add two more Kähler classes which feel

the torsion curves. We choose

β1 = π−1
1

(
− 6σ + 3θ21 + 4θ31 + 2θ32 + 4θ41 + 2θ42 + 6µ

)

+ π−1
2

(
6σ − 3θ21 − 4θ31 − 2θ32 − 4θ41 − 2θ42 − 6µ

)

= π−1
1

(
− 24σ + α1 + 3α2 + 6α3 + 4α4 + 3α5 + 3α6 + α7 + 3α8

)

+ π−1
2

(
24σ − α1 − 3α2 − 6α3 − 4α4 − 3α5 − 3α6 − α7 − 3α8

)

= PD
(
σ×µ

)
− PD

(
µ×σ

)
,

β2 = − 27φ + π−1
1

(
12σ − 6θ11 − 4θ31 − 8θ32 − 8θ41 − 4θ42 − 12ν

)

+ π−1
2

(
6σ − 3θ11 − 2θ31 − 4θ32 − 4θ41 − 2θ42 − 6ν

)

= π−1
1

(
24σ − 2α1 − 4α2 − 6α3 − 4α4 − 2α5 − 6α8

)

+ π−1
2

(
12σ − α1 − 2α2 − 3α3 − 2α4 − α5 − 3α8

)

= PD
(
σ×ν

)
+ 2PD

(
ν×σ

)
− 45φ.

(8.19)

These two additional Kähler classes, β1 and β2, have exactly the right property: They are

perpendicular to all relations in the coinvariant homology, eq. (4.22), except for the last

two (reproduced in eq. (8.18)) that only need to hold with multiplicity three. That is,

(
σ×θmn − σ×θ11

)
· βi = 0 ∀m = 1, 2, 3, 4; n = 0, 1, 2; (8.20)

(
θmn×σ − θ11×σ

)
· βi = 0 ∀m = 1, 2, 3, 4; n = 0, 1, 2; (8.21)

(
σ×f − 3σ×θ11

)
· βi = 0,

(
f×σ − 3 θ11×σ

)
· βi = 0, (8.22)

(
2σ×σ − µ×σ + σ×µ

)
· βi = 0,

(
σ×σ + ν×σ − 2σ×ν

)
· βi = 0 (8.23)

for i = 1, 2. Moreover, with respect to the two curve classes on X̃ that push-forward to

the torsion curve generators, see eq. (4.29), they form a dual basis:

(
σ×µ − σ×σ

)
· β1 = 1,

(
σ×µ − σ×σ

)
· β2 = 0,

(
σ×ν − σ×σ

)
· β1 = 0,

(
σ×ν − σ×σ

)
· β2 = 1.

(8.24)

Hence, instead of restricting ω to the 3-dimensional invariant space eq. (8.17), we now

restrict ω to lie in the 5-dimensional subspace of Kähler forms

ω = t1Rφ + t2Rτ1 + t3Rτ2 + t4Rβ1 + t5Rβ2. (8.25)

As usual, it is more convenient to work with the Fourier-transformed variables

p = e2πit1R , q = e2πit2R , r = e2πit3R , b1 = e2πit4R , b2 = e2πit5R , (8.26)
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where

b3
1 = 1, b3

2 = 1 (8.27)

since they correspond to the torsion curve classes. The 5-dimensional subset of the Kähler

moduli space parametrized by the taR can, of course, be expressed in terms of special linear

combinations of the 19 Kähler moduli ta defined in eq. (7.9). Then, using the definitions

eqs. (7.10) and (8.26), we obtain the relations

p0 = pq5r5

q0 = q5

q1 = q−2b1b2 q2 = q−1b2
2

q3 = 1 q4 = b1b
2
2

q5 = b2 q6 = 1

q7 = b1 q8 = q

r0 = r5

r1 = r−2b2
1b

2
2 r2 = r−1b2

r3 = 1 r4 = b2
1b2

r5 = b2
2 r6 = 1

r7 = b2
1 r8 = q.

(8.28)

We now have everything in place to compute the genus 0 prepotential on X = X̃/G.

Imposing the curve relations eq. (8.15) on the instanton sum for the prepotential on X̃ ,

eq. (7.8), is completely equivalent to substituting eq. (8.28) in the final expression for the

prepotential on X̃, eq.(7.15). The non-perturbative prepotential on the quotient is then
1
|G| times the prepotential on the covering space after the replacement. The result is

F
np
X,0(p, q, r, b1, b2) =

1

|G|
F

np
eX,0

(p0, q0, . . . , q8, r0, . . . , r8)
∣∣∣
p0=pq5r5,...,r8=q

=
1

9
pA(q, b1, b2)A(r, b−1

1 , b−1
2 ) + O(p2),

(8.29)

where we defined the auxiliary function, see eq. (7.16),

A(q, b1, b2) = Ã
(
q5, q−2b1b2, q

−1b2
2, 1, b1b

2
2, b2, 1, b1, q

)

= ΘE8

(
q3; q2b2

1b
2
2, qb2, 1, b2

1b2, b2
2, 1, b2

1, q−1
)
P

(
q3

)12
(8.30)

and an analogous expression for A(r, b−1
1 , b−1

2 ). Expanding A(q, b1, b2) as a power series,

we find

A(q, b1, b2) =
(
1 + 4q + 14q2 + 28q3 + 57q4 + 84q5 + 148q6 + 196q7 + · · ·

)

× (1 + b1 + b2
1)(1 + b2 + b2

2)P (q3)12

=
(
1 + 4q + 14q2 + 40q3 + 105q4 + 252q5 + 574q6 + 1240q7 + · · ·

)

× (1 + b1 + b2
1)(1 + b2 + b2

2)

∈ Z[[q]] ⊗ Z[b1, b2]
/ 〈

b3
1 = 1, b3

2 = 1
〉
.

(8.31)

Since the series expansion is invariant under (b1, b2) 7→ (b−1
1 , b−1

2 ) = (b2
1, b

2
2), we only have

to replace q 7→ r in eq. (8.31) to obtain the series expansion for A(r, b−1
1 , b−1

2 ).

To conclude, we have computed an explicit closed form for the prepotential on X =

X̃/(Z3 × Z3) at linear order in p. This was done by starting with the prepotential on X̃ and
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suitably “modding out” the Z3 × Z3 action. One can now expand the prepotential eq. (8.29)

as a power series and compare it with the general form eq. (8.13), thereby reading off the

instanton numbers. The impatient reader can find them in 2 on page 44. However, before

we come to that, we will calculate the prepotential on X directly in the next subsection.

In the course of this alternative computation, we will find that the expression eq. (8.29)

can be significantly simplified.

8.3 Directly on the quotient X

Instead of working with generic dP9 surfaces, one can also work directly with the special

surfaces in eq. (2.2a) and eq. (2.2b). In order to admit a vertical G = Z3 × Z3 group action,

they have a special complex structure such that

• There are 9 sections, MW (Bi) = Z3 ⊕ Z3.

• The elliptic fibration Bi → P1 has 4I3 Kodaira fibers.

The three irreducible components of each of the four I3 fibers are permuted by the four

different Z3 subgroups of G. Therefore, the quotient X = X̃/G is still fibered by Abelian

surfaces, having 4 singular fibers of the type T 2 × I0 and 4 singular fibers of the type

I0 × T 2. We can immediately identify the following curves on the quotient X:

• 9 sections sij in MW (X) = Z3 ⊕ Z3, all distinguished by H2(X, Z)tors = Z3 ⊕ Z3.

• The fiber classes f1 and f2 under the two different elliptic fibrations.

Following exactly the same reasoning as in 7.1, one can write down the instanton contribu-

tion from the pseudo-sections to the genus 0 prepotential directly on the quotient X. The

result is

F
np
X,0 =

∑

sij∈
MW (X)

e
2πi

R
sij

ω

(
∞∑

m=0

p(m)e
2πim

R
f1

ω

)4 (
∞∑

n=0

p(n)e
2πin

R
f2

ω

)4

+ (contribution of multi-sections). (8.32)

We now pick variables for the complexified Kähler moduli space on X such that

e
2πi

R
sij

ω
= pbi

1b
j
2, e

2πi
R
f1

ω
= q, e

2πi
R

f2
ω

= r. (8.33)

Expanding the prepotential in these variables, we obtain

F
np
X,0(p, q, r, b1, b2) =




2∑

i,j=0

pbi
1b

j
2


P (q)4P (r)4 + O(p2)

= p(1 + b1 + b2
1)(1 + b2 + b2

2)P (q)4P (r)4 + O(p2).

(8.34)

Note that this expression appears to be distinct from eq. (8.29). However, although the

two formulas look very different, they must be identical functions of p, q, r, b1, b2. Indeed,

as we now show, this is the case. Note that the difficult part in the first expression for the

prepotential is the E8 theta function in the function A, see eq. (8.30). First, let us ignore

b1 and b2 for the moment, that is, set b1 = b2 = 1, and recall [58]
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Theorem 3 (Zagier).

ΘE8

(
q3; q2, q, 1, 1, 1, 1, 1, q−1

)
P

(
q3

)12
= 9P (q)4 ∈ Z[[q]]. (8.35)

Using this identity, we can eliminate the E8 theta function from the function A(q, 1, 1).

A short computation then shows the equality of the two expressions for the prepotential,

eqns (8.34) and (8.29).

Putting b1 and b2 back into A(q, b1, b2), it is very suggestive that Zagier’s identity

ought to be generalized to

ΘE8

(
q3; q2b2

1b
2
2, qb2, 1, b2

1b2, b2
2, 1, b2

1, q−1
)
P

(
q3

)12
=

= (1 + b1 + b2
1)(1 + b2 + b2

2)P (q)4

∈ Z[[q]] ⊗ Z[b1, b2]
/ 〈

b3
1 = 1, b3

2 = 1
〉
. (8.36)

Using a computer, we have expanded both sides of eq. (8.36) up to degree 10 and found

agreement. This generalized identity implies the equality of the two expressions

{
p-linear part of eq. (8.29)

}
=

1

9
pA(q, b1, b2)A(r, b−1

1 , b−1
2 )

=
1

9
p
(
1 + b1 + b2

1

)2(
1 + b2 + b2

2

)2
P (q)4P (r)4

= p(1 + b1 + b2
1)(1 + b2 + b2

2)P (q)4P (r)4

=
{
p-linear part of eq. (8.34)

}

(8.37)

for the genus 0 prepotential at linear order in p, where we used that b3
1 = 1 = b3

2. We

conclude that the two expressions for the prepotential on X in eqs. (8.34) and (8.29) are

indeed the same function.

Expanding our formula for the instanton generated genus 0 prepotential as a power

series and comparing it with the general form given in eq. (8.13), one can finally read

off the instanton numbers computed using the A-model. We will do this in the following

subsection.

8.4 Instanton numbers

Recall from eq. (5.40) that to correctly distinguish all homology classes of curves, we need

5 numbers

(n1, n2, n3,m1,m2) ∈ Z ⊕ Z ⊕ Z ⊕ Z3 ⊕ Z3 ≃ H2

(
X, Z

)
. (8.38)

The effect of the torsion homology classes is that, for any curve on X, we can assign

quantum numbers m1,m2 ∈ {0, 1, 2} in addition to the degrees n1, n2, n3 ∈ Z. With this in

mind, and using eq. (8.26), the general form of the instanton expression eq. (8.13) becomes

F
np
X,0(p, q, r, b1, b2) =

∑

n1,n2,n3∈Z

m1,m2∈Z3

n(n1,n2,n3,m1,m2) Li3

(
pn1qn2rn3bm1

1 bm2
2

)
. (8.39)
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@
@

@n2

n3
0 1 2 3 4 5 6 7 8 9

0 1 4 14 40 105 252 574 1240 2580 5180

1 4 16 56 160 420 1008 2296 4960 10320 20720

2 14 56 196 560 1470 3528 8036 17360 36120 72520

3 40 160 560 1600 4200 10080 22960 49600 103200 207200

4 105 420 1470 4200 11025 26460 60270 130200 270900 543900

5 252 1008 3528 10080 26460 63504 144648 312480 650160 1305360

6 574 2296 8036 22960 60270 144648 329476 711760 1480920 2973320

7 1240 4960 17360 49600 130200 312480 711760 1537600 3199200 6423200

8 2580 10320 36120 103200 270900 650160 1480920 3199200 6656400 13364400

9 5180 20720 72520 207200 543900 1305360 2973320 6423200 13364400 26832400

Table 2: Instanton numbers n(1,n2,n3,∗,∗) computable in the A-model. In this case (for n1 = 1),

the instanton number is independent of the torsion part of the homology class.

where n(n1,n2,n3,m1,m2) is the number of instantons in the given homology class. Comparing

this with the series expansion of the formula for the prepotential, either eq. (8.29) or (8.34),

allows us to read off the instanton numbers.

As we explained previously, our A-model computation only yielded the genus 0 prepo-

tential up to linear order in p, that is, for n1 ≤ 1. The constant part in p vanishes, so all

of these instanton numbers are zero,

n(0,n2,n3,m1,m2) = 0 ∀n2, n3 ∈ Z, m1,m2 ∈ Z3. (8.40)

At linear order in p, that is, n1 = 1, the instanton numbers do not vanish. Interestingly,

the instanton number does not depend on the torsion part of the homology class. That is,

n(1,n2,n3,m1,m2) = n(1,n2,n3,0,0) ∀m1,m2 ∈ {0, 1, 2}. (8.41)

The underlying reason for this is another geometric Z3 × Z3 group action. Unlike G ≃

Z3 × Z3, this additional group acts on X and has fixed points, see Part B [30], section

6. On the homology classes (1, n2, n3,m1,m2) its action is generated by m1 7→ (m1 + 1)

mod 3 and m2 7→ (m2 +1) mod 3. Since the prepotential must respect this symmetry, the

corresponding instanton numbers are equal.

We list the instanton numbers for n2, n3 ≤ 9 in 2. Note the symmetry under the

exchange n2 ↔ n3. This is already visible in the expression for the prepotential, which is

invariant under the exchange q ↔ r,

F
np
X,0(p, r, q, b1, b2) =

( 2∑

i,j=0

pbi
1b

j
2

)
P (q)4P (r)4 + O(p2) = F

np
X,0(p, q, r, b1, b2). (8.42)
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The underlying geometric reason is that we can exchange the factors in the fiber product

X̃ = B1 ×P
1 B2 ≃ B2 ×P

1 B1. (8.43)

Unwinding the definitions, one can show that this geometric exchange corresponds precisely

to the exchange of q and r.

The instanton numbers calculated using the A-model, and presented above, have one

glaring limitation. Namely, they are restricted to n1 ≤ 1. That is, we can only compute

the prepotential to linear order in p. Using mirror symmetry, we will be able to overcome

this restriction in Part B [30].

8.5 The partial quotient X

Since G = G1 × G2 = Z3 × Z3 is generated by two independent Z3 actions, there are the

obvious partial quotients

X̃
mod G2

ÂÂ?
??

??
??

mod G1

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

mod G

²²

X =X̃
/
G1

mod G2 ÂÂ?
??

??
??

?
X̃

/
G2

mod G1ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

X

. (8.44)

Having just computed the prepotential on X, there is little intrinsic interest in the sim-

pler partial quotients. However, note that the G1 quotient X = X̃/G1 is again a toric

variety since G1 acts only by phase rotations on the coordinates, see eq. (2.3a). This ob-

servation will enable us to compute the instanton numbers using the B-model, as we will

in Part B [30]. To this end, we will need the correct variable substitution analogous to

eq. (8.28) but for the final G2 quotient X = X/G2. This is why we will analyze the partial

quotient X in this subsection. In the same way as for the full G = Z3 × Z3 quotient, we

can compute part of its prepotential by properly descending X̃ → X .

Because we will have to compare our basis for divisors with the basis that is natural in

toric geometry, let us first have a closer look at the G1 invariant cohomology of X̃. First,

the G1 invariant homology of the dP9 surfaces is

H2(Bi, Z)G1 = spanZ

{
f, t, u, v

}
, (8.45)

where f and t are the G1 × G2 invariant divisors, see eq. (4.7) and25

u = θ21 + θ31 + θ41 + 3µ = 6f + 6σ − 2α1 − α2

v = 2t + θ11 = −3α1 + 3α3 + 2α4 + α5 + 3α8

(8.46)

are only G1 but not G2-invariant. As in 4.2, pulling these back yields a basis for the

G1-invariant divisor classes of the Calabi-Yau threefold. We define

υ1 = π−1
1 (u), υ2 = π−1

2 (u), ψ1 = π−1
1 (v), ψ2 = π−1

2 (v) (8.47)

25At this point it is not obvious why we choose 2t + θ11 instead of just θ11 for the final generator of the

G1-invariant cohomology. As we will see below, this particular basis choice is better adapted to the Kähler

cone.
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in addition to eq. (4.10). As usual, we will not distinguish between divisors and their duals

in cohomology, see 12. With this abuse of notation, we obtain the basis

H2
(
X̃, Z

)G1 = spanZ

{
φ, τ1, υ1, ψ1, τ2, υ2, ψ2

}
. (8.48)

All products between these cohomology classes are determined by the relations

Hev
(
X̃, Q

)G1 = Q[φ, τ1, υ1, ψ1, τ2, υ2, ψ2]
/〈

φ2, τ1φ = 3τ2
1 , τ2φ = 3τ2

2 ,

φυ1 = 3τ2
1 , φυ2 = 3τ2

2 , φψ1 = 6τ2
1 , φψ2 = 6τ2

2 , τ1υ1 = 3τ2
1 , τ2υ2 = 3τ2

2 ,

τ1ψ1 = 3τ2
1 , τ2ψ2 = 3τ2

2 , υ1υ1 = 3τ2
1 , υ2υ2 = 3τ2

2 , υ1ψ1 = 6τ2
1 , υ2ψ2 = 6τ2

2 ,

ψ1ψ1 = 6τ2
1 , ψ2ψ2 = 6τ2

2 , (τ1 − υ1)(τ2 − υ2), (2υ1 − ψ1)(2υ2 − ψ2),

(2υ1 − ψ1)(2τ2 − ψ2), (2υ2 − ψ2)(τ1 − υ1)
〉
. (8.49)

Using the above relations, we find that any triple intersection can be rewritten as a multiple

of τ2
1 τ2 = 3{pt.}. Therefore, the non-vanishing intersection numbers are

φτ1τ2 = 9 φτ1υ2 = 9 φτ1ψ2 = 18 φυ1τ2 = 9 φυ1υ2 = 9

φυ1ψ2 = 18 φψ1τ2 = 18 φψ1υ2 = 18 φψ1ψ2 = 36 τ2
1 τ2 = 3

τ2
1 υ2 = 3 τ2

1 ψ2 = 6 τ1υ1τ2 = 9 τ1υ1υ2 = 9 τ1υ1ψ2 = 18

τ1ψ1τ2 = 9 τ1ψ1υ2 = 9 τ1ψ1ψ2 = 18 τ1τ
2
2 = 3 τ1τ2υ2 = 9

τ1τ2ψ2 = 9 τ1υ
2
2 = 9 τ1υ2ψ2 = 18 τ1ψ

2
2 = 18 υ2

1τ2 = 9

υ2
1υ2 = 9 υ2

1ψ2 = 18 υ1ψ1τ2 = 18 υ1ψ1υ2 = 18 υ1ψ1ψ2 = 36

υ1τ
2
2 = 3 υ1τ2υ2 = 9 υ1τ2ψ2 = 9 υ1υ

2
2 = 9 υ1υ2ψ2 = 18

υ1ψ
2
2 = 18 ψ2

1τ2 = 18 ψ2
1υ2 = 18 ψ2

1ψ2 = 36 ψ1τ
2
2 = 6

ψ1τ2υ2 = 18 ψ1τ2ψ2 = 18 ψ1υ
2
2 = 18 ψ1υ2ψ2 = 36 ψ1ψ

2
2 = 36.

(8.50)

The G1-invariant Kähler cone on Bi consists of the potential Kähler classes in

H2(Bi, Z)G1 . It can be computed [57] as the dual of the cone of effective curves on Bi.

The effective curves are [59]

Theorem 4 (Looijenga). The cone of effective curves on a dP9 surface B is generated

by the following curve classes e ∈ H2(Bi, Z):

1. The exceptional curves (e2 = −1). These are the elements of the Mordell-Weil group

MW (B).

2. The irreducible components of singular Kodaira fibers (e2 = −2).

3. The “future cone” of the positive classes (e2 ≥ 1).

For the Z3 × Z3-symmetric dP9 surfaces B1, B2 that we are interested in, the Mordell-

Weil group consists of the 9 elements given in eq. (3.4). Furthermore, the 4I3 Kodaira

fibers have 12 irreducible components θ10, . . . , θ42. The positive classes do not yield any

extra constraints on the dual cone. The Kähler cone

K(Bi)
G1 = spanR>

{
κ1, κ2, κ3, κ4, κ5, κ6, κ7, κ8

}
⊂ H2

(
Bi, Z

)G1 (8.51)
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turns out to be non-simplicial with edges

κ1 = f κ2 = t κ3 = u κ4 = v

κ5 = 3t + f − v κ6 = 3t + u − v

κ7 = f − u + v κ8 = 3t + f − u.

(8.52)

For future reference we note that the intersection matrix of the Kähler cone generators on

Bi is

(−) · (−) κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8

κ1 0 3 3 6 3 6 3 6

κ2 3 1 3 3 3 3 3 3

κ3 3 3 3 6 6 6 6 9

κ4 6 3 6 6 9 9 6 9

κ5 3 3 6 9 3 6 6 6

κ6 6 3 6 9 6 6 9 9

κ7 3 3 6 6 6 9 3 6

κ8 6 3 9 9 6 9 6 6

(8.53)

We note that G1 and G2 commute. Hence, G2 acts on the G1-invariant homology and

Kähler cone. Using the explicit group action, see eq. (3.17), one finds

g2




f

t

u

v


 =




1 0 0 0

0 1 0 0

1 3 0 −1

0 3 1 −1







f

t

u

v


 (8.54)

and (
κ1, κ2, κ3, κ4, κ5, κ6, κ7, κ8

)
g2
7→

(
κ1, κ2, κ5, κ6, κ7, κ8, κ3, κ4

)
(8.55)

Using the Kähler cone on the base dP9 surfaces, the Kähler cone on X is finally found [57]

to be

K
(
X

)
= K

(
X̃

)G1

= spanR>

{
φ, τ1, π∗

1(κ3), . . . , π
∗
1(κ8), τ2, π∗

2(κ3), . . . , π
∗
2(κ8)

}
.

(8.56)

Let us now return to the instanton counting on X = X̃/G1. Recall from eq. (5.16)

that

H2

(
X, Z

)
= Z7 ⊕ Z3. (8.57)

Using the same trick as in 8.2, we can determine the prepotential on X. We pick restricted

Kähler moduli

ω = t1Rφ + t2Rτ1 + t3Rυ1 + t4Rψ1 + t5Rτ2 + t6Rυ2 + t7Rψ2 + t8Rβ1 (8.58)
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corresponding to a basis26 for the G1-invariant cohomology, see eq. (8.48), and one addi-

tional generator β1 which detects the generator of

H2

(
X̃, Z

)
G1,tors

= Z3 = H2

(
X, Z

)
tors

, (8.59)

see eq. (8.19). The Fourier transformed variables, which we will use in the following, are

P = e2πit1
R ,

Q1 = e2πit2
R , Q2 = e2πit3

R , Q3 = e2πit4
R ,

R1 = e2πit5
R , R2 = e2πit6

R , R3 = e2πit7
R , , (8.60)

and

b1 = e2πit8R , (8.61)

where

b3
1 = 1. (8.62)

The relations between the restricted variables and the full 19 variables are

p0 = PQ5
1Q

6
2R

5
1R

6
2

q0 = Q5
1Q

6
2

q1 = Q−2
1 Q−2

2 Q−3
3 b1 q2 = Q−1

1 Q−1
2

q3 = Q3
3 q4 = Q2

3b1

q5 = Q3 q6 = 1

q7 = b1 q8 = Q1Q
3
3

r0 = R5
1R

6
2

r1 = R−2
1 R−2

2 R−3
3 b2

1 r2 = R−1
1 R−1

2

r3 = R3
3 r4 = R2

3b
2
1

r5 = R3 r6 = 1

r7 = b2
1 r8 = R1R

3
3.

(8.63)

As done previously for the full quotient, we now substitute these variables into the formula

for the prepotential on the covering space X̃ , see eq. (7.15), and divide by |G1| = 3. The

result is

F
np

X,0
(P,Q1, Q2, Q3, R1, R2, R3, b1) =

1

|G1|
F

np
eX,0

(p, q0, . . . , q8, p0, . . . , p8) (8.64)

=
1

3
P A(Q1, Q2, Q3, b1)A(R1, R2, R3, b

−1
1 ) + O(P 2),

where

A(Q1, Q2, Q3, b1) = ΘE8

(
Q3

1Q
3
2Q

6
3; Q2

1Q
2
2Q

3
3b

2
1, Q1Q2, Q−3

3 ,

Q−2
3 b2

1, Q−1
3 , 1, b2

1, Q−1
1 Q−3

3

)
P

(
Q3

1Q
3
2Q

6
3

)12
(8.65)

26Note that the 7 generators φ, τ1, υ1, ψ1, τ2, υ2, ψ2 are the edges of one maximal simplicial subcone of

the Kähler cone. This ensures again that the Fourier series of the prepotential will only contain positive

powers.
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and the analogous expression for A(R1, R2, R3, b
−1
1 ). Expanding A(Q1, Q2, Q3, b1) as a

power series, we find

A(Q1, Q2, Q3, b1) = (1 + b1 + b2
1)×

×
(
1+ Q2 + Q2Q3 + Q1Q2Q3 + 3Q1Q2Q

2
3 + 3Q1Q

2
2Q

2
3 + Q1Q2Q

3
3+

+ Q2
1Q2Q

3
3 + 3Q1Q

2
2Q

3
3 + 3Q2

1Q
2
2Q

3
3 + Q2

1Q2Q
4
3 + Q1Q

3
2Q

3
3+

+ Q2
1Q

3
2Q

3
3 + 9Q2

1Q
2
2Q

4
3 + 9Q2

1Q
3
2Q

4
3 + 3Q2

1Q
2
2Q

5
3+

+ 3Q3
1Q

2
2Q

5
3 + Q2

1Q
4
2Q

4
3 + 9Q2

1Q
3
2Q

5
3+

+ 9Q3
1Q

3
2Q

5
3 + 3Q3

1Q
2
2Q

6
3 + 3Q2

1Q
4
2Q

5
3 + Q2

1Q
3
2Q

6
3+

+ 3Q3
1Q

4
2Q

5
3 + 25Q3

1Q
3
2Q

6
3 + Q2

1Q
4
2Q

6
3+

+ (total degree ≥ 13)
)

∈ Z[[Q1, Q2, Q3]] ⊗ Z[b1]
/ 〈

b3
1 = 1

〉

(8.66)

Finally, we note that we can now compute the prepotential on X = X̃/G in terms of the

prepotential on X = X̃/G1. One can easily show that the correct substitution of variables

is
P = p

Q1 = q

Q2 = b2

Q3 = b2

R1 = r

R2 = b2
2

R3 = b2
2.

(8.67)

Obviously one obtains exactly the same as prepotential as in eq. (8.29), where we divided

out G = G1×G2 in one step rather than first G1 and then G2. However, as we will show in

the companion paper Part B, one can use toric mirror symmetry to compute any desired

term in the prepotential on X . Knowing the above substitution, eq. (8.67), will enable us

to find the prepotential on X = X/G2 beyond linear order in p, including its b2 torsion

expansion.

9. Conclusion

The goal of this paper is to investigate rational curves on the Calabi-Yau threefold X,

which is the G = Z3 × Z3 quotient of its universal cover X̃ . Its Hodge numbers and

integral homology are

hp,q
(
X

)
= 1

0

0

1

0

3

3

0

0

3

3

0

1

0

0

1 , Hi

(
X, Z

)
≃





Z i = 6

0 i = 5

Z3 ⊕
(
Z3

)2
i = 4

Z8 ⊕
(
Z3

)2
i = 3

Z3 ⊕
(
Z3

)2
i = 2

(
Z3

)2
i = 1

Z i = 0.

(9.1)
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Interestingly, this is one of the few known examples of Calabi-Yau manifolds whose degree-2

homology has a finite part (torsion). The prepotential is a function of the 3 free generators

p, q, r and the 2 torsion generators b1, b2. We found a closed formula for the genus zero

prepotential

F
np
X,0(p, q, r, b1, b2) =

( 2∑

i,j=0

pbi
1b

j
2

)
P (q)4P (r)4 + O(p2) =

2∑

i,j=0

Li3(pbi
1b

j
2) + · · · (9.2)

to linear order in p. This allows us to derive part of the instanton numbers on X, distin-

guishing the torsion part of the curve class in the integral homology. The corresponding

instantons are listed in 2 on page 44.

Clearly, we would like to obtain the complete prepotential and not just up to linear

order in p. However, this is very difficult to do directly. In Part B [30], we will use mirror

symmetry to attack this problem. There, we will find a way to obtain the higher order

terms as well. The final result, limited only by computing power, will be

F
np
X,0(p, q, r, b1, b2) = F

np
X∗,0(p, q, r, b1, b2)

=

2∑

i,j=0

(
Li3(pbi

1b
j
2) + 4Li3(pqbi

1b
j
2) + 4Li3(prbi

1b
j
2)

+ 14Li3(pq2bi
1b

j
2) + 16Li3(pqrbi

1b
j
2) + 14Li3(pr2bi

1b
j
2)

+ 40Li3(pq3bi
1b

j
2) + 56Li3(pq2rbi

1b
j
2) + 56Li3(pqr2bi

1b
j
2)

+ 40Li3(pr3bi
1b

j
2) + 105Li3(pq4bi

1b
j
2) + 160Li3(pq3rbi

1b
j
2)

+ 196Li3(pq2r2bi
1b

j
2) + 160Li3(pqr3bi

1b
j
2) + 105Li3(pr4bi

1b
j
2)

− 2Li3(p
2qbi

1b
j
2) − 2Li3(p

2rbi
1b

j
2) − 28Li3(p

2q2bi
1b

j
2)

+ 32Li3(p
2qrbi

1b
j
2) − 28Li3(p

2r2bi
1b

j
2) − 192Li3(p

2q3bi
1b

j
2)

+ 440Li3(p
2q2rbi

1b
j
2) + 440Li3(p

2qr2bi
1b

j
2) − 192Li3(p

2r3bi
1b

j
2)

)

+ 3Li3(p
3q) + 3Li3(p

3r)

+ 9Li3(p
3q2) + 27

∑

(i,j)6=(0,0)

Li3(p
3q2bi

1b
j
2)

+ 9Li3(p
3r2) + 27

∑

(i,j)6=(0,0)

Li3(p
3r2bi

1b
j
2)

+ 27Li3(p
3qr) + 81

∑

(i,j)6=(0,0)

Li3(p
3qrbi

1b
j
2)

+
(
total p, q, r-degree ≥ 6

)
.

(9.3)

This provides some interesting examples of instanton numbers that do depend on the

torsion part of their homology class, see 3.
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A. Duology

A.1 Poincaré duality and equalities

For any closed, connected, oriented d-dimensional manifold Y there are non-singular27

pairings

Hk

(
Y, Z

)
free

× Hk
(
Y, Z

)
free

→ Z, (S,ϕ) 7→

∫

S
ϕ,

Hk
(
Y, Z

)
free

× Hd−k
(
Y, Z

)
free

→ Z, (ϕ,ψ) 7→

∫

Y
ϕ ∧ ψ,

Hk

(
Y, Z

)
free

× Hd−k

(
Y, Z

)
free

→ Z, (M,N) 7→ M · N.

(A.1)

The consequence is that the corresponding (co)homology groups are of the same rank.

Moreover, if a group G acts orientation-preservingly on Y then the corresponding

(co)homology groups are dual G-representations.

However, the “best” version of Poincaré duality identifies homology and cohomology

including torsion, and is a map

PD : Hk
(
Y, Z

) ∼
−→ Hd−k

(
Y, Z

)
, ϕ 7→ [Y ] ∩ ϕ. (A.2)

This map PD is an isomorphism; by abuse of notation we will denote the inverse by PD

as well. In full generality, the map PD is the cap-product with the fundamental class.

27A bilinear map is non-singular if, when written in terms of integral bases, it is represented by a square

matrix of determinant 1.
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Ignoring torsion, we can also describe PD on the level of differential forms as follows:

Consider a (d− k)-dimensional submanifold S ⊂ Y . Then the k-form PD(S) is the Thom

class of the normal bundle NY |S, that is, a bump k-form along the normal directions of S.

Note that PD does not involve any duality. If there is an orientation-preserving G-action

on Y , then Hk(Y, Z) ≃ Hd−k(Y, Z) are isomorphic group representations.

A.2 Tate duality

Looking at the result for Z3 × Z3 group (co)homology in eq. (4.34), there seems to be the

following relation

Hi

(
G,R∨

)
tors

≃ H i+1
(
G,R

)
tors

(A.3)

between group homology and group cohomology. In fact, this is a general property known

as Tate duality. Recall that the Tate cohomology groups unify group homology and coho-

mology into

Ĥ i(G,M) =





H i(G,M) i > 0

MG/(tr)M i = 0

ker(tr)/IM i = −1

H−i−1(G,M) i < −1,

(A.4)

where M is any G-module. If M is Z-torsion free, that is, a representation of G on a lattice

Zn, then [61]

Ĥ i
(
G,Hom(M, Z)

)
≃ Hom

[
Ĥ−i(G,M), Q/Z

]
(A.5)

In particular, setting M = R proves eq. (A.3).

B. Relations amongst divisors

In 3.1, eq. (3.7) we chose one particular basis for the homology of the dP9 surfaces, namely

H2(Bi, Z) = spanZ

{
σ, f, θ11, θ21, θ31, θ32, θ41, θ42, µ, ν

}
. (B.1)

In this appendix we give the expansion of the other curves of interest in terms of this chosen

basis. The expansion of any other curve can be found using its intersection numbers with

the 10 base curves.

The 9 sections forming the Mordell-Weil group intersect the vertical divisors according
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to eq. (3.16), and they do not intersect amongst themselves. Hence,

σ = σ,

µ = µ,

µ ⊞ µ = − σ − f + θ21 + θ31 + θ41 + 2µ,

ν = ν,

ν ⊞ µ = − σ − f + θ31 + θ32 + θ41 + µ + ν,

ν ⊞ µ ⊞ µ = − 2σ − 2f + θ21 + θ31 + θ32 + 2θ41 + θ42 + 2µ + ν,

ν ⊞ ν = − σ − f + θ11 + θ32 + θ41 + 2ν,

ν ⊞ ν ⊞ µ = − 2σ − 2f + θ11 + θ31 + θ32 + 2θ41 + θ42 + µ + 2ν,

ν ⊞ ν ⊞ µ ⊞ µ = − 3σ − 3f + θ11 + θ21 + 2θ31 + 2θ32 + 2θ41 + θ42 + 2µ + 2ν.

(B.2)

Finally, the components of i = 1, . . . , 4 distinct I3 Kodaira fibers intersect as

(−) · (−) θi0 θi1 θi2

θi0 −2 1 1

θi1 1 −2 1

θi2 1 1 −2.

(B.3)

This lets us express the two components θ12, θ22 that are not part of our chosen basis as

θ12 = 3σ + 3f − 2θ11 − θ31 − 2θ32 − 2θ41 − θ42 − 3ν,

θ22 = 3σ + 3f − 2θ21 − 2θ31 − θ32 − 2θ41 − θ42 − 3µ.
(B.4)

C. Image of group homology

The purpose of this appendix is to find the image

Z3 ≃ H3

(
G12; Z

)
−→ H3

(
G; Z

)
≃ Z3 ⊕ Z3 ⊕ Z3 . (C.1)

The obvious way to get an explicit handle on this map is to extend the inclusion ZG12 ⊂ ZG

to a chain map of the corresponding resolutions of Z. Applying − ⊗ Z to the resolution

then makes the image of the homology group clear.

To write down the resolution, define the following trace and difference maps in the

group ring:

t1 =
2∑

i=0

(
g1

)i
, t2 =

2∑

i=0

(
g2

)i
, d1 = 1 − g1 , d2 = 1 − g2 . (C.2)
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Using these, we write down the following chain map between the resolutions. From that,

one can easily determine the pushforward of the homology groups as

ZG12

P
(g1g2)i

//

(··· )

²²

ZG12
1−g1g2 //

( 1 g1 g2
1 1 )

²²

ZG12

P
(g1g2)i

//

( 1 1+g1+g1g2 g2
1 )

²²

ZG12
1−g1g2//

( g2 1 )

²²

ZG12
Ä _

²²

⊕5ZG0
BB@

t1 0 0 0
−d2 d1 0 0
0 t2 t1 0
0 0 −d2 d1
0 0 0 t2

1
CCA

// ⊕4ZG 0
@

d1 0 0
d2 t1 0
0 −d2 d1
0 0 h2

1
A

// ⊕3ZG  
t1 0
−d2 d1
0 t2

!// ⊕2ZG “
d1
d2

”// ⊕1ZG

⇓ Apply (−⊗ZG12
Z) resp. (−⊗ZGZ)

Z
3 //

(··· )

²²

Z
0 //

( 1 1 1 1 )

²²

Z
3 //

( 1 3 1 )

²²

Z
0 //

( 1 1 )

²²

Z

Z5

0
B@

3 0 0 0
0 0 0 0
0 3 3 0
0 0 0 0
0 0 0 3

1
CA // Z4

 0 0 0
0 3 0
0 −3 0
0 0 0

!
// Z3

„
3 0
0 0
0 3

«
// Z2 ( 0

0 ) // Z

⇓ Homology

0 Z3 0 Z3 Z

H4

(
G12; Z

)

²²

H3

(
G12; Z

)

( 1 1 1 )

²²

H2

(
G12; Z

)

²²

H1

(
G12; Z

)

( 1 1 )

²²

H0

(
G12; Z

)

H4

(
G; Z

)
H3

(
G; Z

)
H2

(
G; Z

)
H1

(
G; Z

)
H0

(
G; Z

)

(
Z3

)2 (
Z3

)3
Z3

(
Z3

)2
Z .

(C.3)

It is much easier to determine the image under the inclusion G1 ⊂ G and G2 ⊂ G. Using

the same bases as in eq. (C.3), they are

H3

(
G1; Z

)
= Z3

( 1 0 0 ) // (Z3

)3
= H3

(
G; Z

)

H3

(
G2; Z

)
= Z3

( 0 0 1 ) // (Z3

)3
= H3

(
G; Z

)
.

(C.4)
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